Skip to Main Content

About Acetylacetonates

Acetylacetone Formula Diagram (C5H8O2)

Acetylacetonates are coordination complexes derived from acetylacetone and metal salts, most often salts of transition metals. These compounds allow many metal ions to be soluble in organic solvent, in contrast to most metal salts. This allows them to be used as catalyst precursors and reagents in reactions which occur in organic phase in chemical synthesis.

Acetylacetonates are frequently used as shift reagents in nuclear magnetic resonance (NMR) spectroscopy, a research and analysis technique that exploits magnetic properties of atomic nuclei to provide detailed information about a chemical substance. Additionally, some acetylacetonates can be used as precursors for deposition of thin films using metal organic chemical vapour deposition (MOCVD) or atomic layer epitaxy (ALE). Aluminum acetylacetonate has been used in MOCVD way to deposit films of crystalline aluminum oxide, while ALE can be used to deposit gallium oxide from gallium acetylactetonate. The latter compound can also be used as a precursor to catalytic growth of gallium nitride nanostructures.

Acetylacetonate Products

American Elements manufactures multiple forms of acetylacetonate compounds including solutions, nanopowders, submicron, and -325 mesh powders, and high surface area materials with particle distribution and particle size controlled and certified. We also produce larger -40 mesh, -100 mesh, -200 mesh range sizes and <0.5 mm, 2 mm, 5 mm and other sizes of shot, granules, lump, flake and pieces. Purities include 99%, 99.9%, 99.99%, 99.999% and 99.9999% (2N, 3N, 4N, 5N and 6N).

American Elements maintains industrial scale production for all its acetylacetonates products and will execute Non-Disclosure or Confidentiality Agreements to protect customer know-how.

Recent Research & Development for Acetylacetonates

  • An Oxygen-Chelate Complex, Palladium Bis-acetylacetonate, Induces Apoptosis in H460 Cells via Endoplasmic Reticulum Stress Pathway Rather than Interacting with DNA. Yi Wang, Jie Hu, Yuepiao Cai, Shanmei Xu, Bixia Weng, Kesong Peng, Xiaoyan Wei, Tao Wei, Huiping Zhou, Xiaokun Li, and Guang Liang. J. Med. Chem.: November 25, 2013
  • Binary Diffusion Coefficients of Platinum(II) Acetylacetonate in Supercritical Carbon Dioxide. Chang Yi Kong, Tomoya Siratori, Guosheng Wang, Takeshi Sako, and Toshitaka Funazukuri. J. Chem. Eng. Data: October 15, 2013
  • Cyclometalated 4-Styryl-2-phenylpyridine Platinum(II) Acetylacetonate Complexes as Second-Order NLO Building Blocks for SHG Active Polymeric Films. Alessia Colombo, Claudia Dragonetti, Daniele Marinotto, Stefania Righetto, Dominique Roberto, Silvia Tavazzi, Muriel Escadeillas, Véronique Guerchais, Hubert Le Bozec, Abdou Boucekkine, and Camille Latouche. Organometallics: July 11, 2013
  • Single-Molecule Magnetism in Three Related {CoIII2DyIII2}-Acetylacetonate Complexes with Multiple Relaxation Mechanisms. Stuart K. Langley, Nicholas F. Chilton, Boujemaa Moubaraki, and Keith S. Murray. Inorg. Chem.: May 29, 2013
  • Oxidatively Induced P–O Bond Formation through Reductive Coupling between Phosphido and Acetylacetonate, 8-Hydroxyquinolinate, and Picolinate Groups. Andersson Arias, Juan Forniés, Consuelo Fortuño, and Antonio Martín , Piero Mastrorilli, Stefano Todisco, Mario Latronico, and Vito Gallo. Inorg. Chem.: April 18, 2013
  • Binding Modes of Carboxylate- and Acetylacetonate-Linked Chromophores to Homodisperse Polyoxotitanate Nanoclusters. Jesse D. Sokolow, Elzbieta Trzop, Yang Chen, Jiji Tang, Laura J. Allen, Robert H. Crabtree, Jason B. Benedict, and Philip Coppens. J. Am. Chem. Soc.: June 19, 2012
  • Dinuclear Cu(II) Complexes of Isomeric Bis-(3-acetylacetonate)benzene Ligands: Synthesis, Structure, and Magnetic Properties. Marzio Rancan, Alessandro Dolmella, Roberta Seraglia, Simonetta Orlandi, Silvio Quici, Lorenzo Sorace, Dante Gatteschi, and Lidia Armelao. Inorg. Chem.: April 19, 2012
  • Bis(acetylacetonate) Tungsten(IV) Complexes Containing a Basic Diazoalkane or Oxo Ligand. Chetna Khosla, Andrew B. Jackson, Peter S. White, and Joseph L. Templeton. Organometallics: January 17, 2012
  • Visible-Light-Driven Copper Acetylacetonate Decomposition by BiVO4. Shin-ichi Naya, Masanori Tanaka, Keisuke Kimura, and Hiroaki Tada. Langmuir: July 7, 2011
  • Metal-Acetylacetonate Synthesis Experiments: Which Is Greener?. M. Gabriela T. C. Ribeiro and Adélio A. S. C. Machado. J. Chem. Educ.: April 11, 2011