(2N) 99%  •  (3N) 99.9%  •  (4N) 99.99%  •  (5N) 99.999%  •  (6N) 99.9999%


AE Sulfates™

French German Italian Portuguese Spanish Swedish
Sulfates Sulfate Solfati Sulfatos Sulfatos 硫酸盐 硫酸塩 Sulfater

32.4 (A)/00.012

  Hydrogen                                 Helium
  Lithium Beryllium                     Boron Carbon Nitrogen Oxygen Fluorine Neon
  Sodium Magnesium                     Aluminum Silicon Phosphorus Sulfur Chlorine Argon
  Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
  Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
  Cesium Barium Lanthanum Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon
  Francium Radium Actinium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Ununtrium Flerovium Ununpentium Livermorium Ununseptium Ununoctium
      Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium    
      Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawerencium    

A sulfate is a chemical compound containing sulfate (SO4). Sulfates are salts or esters of sulfuric acid, H2SO4, formed by replacing one or both of the hydrogen atoms with a metal.  Most metal sulfates are readily soluble in water, but calcium is only slightly soluble, while barium, lead, and strontium sulfates are insoluble. Sulfates are widely distributed in nature. Barium sulfate occurs as barite; calcium sulfate is found as gypsum, alabaster, and selenite; Epsom salts is magnesium sulfate; sodium sulfate occurs as its decahydrate, Glauber's salt; and strontium sulfate occurs as celestite. Some sulfates were formerly known as vitriols; blue vitriol is cupric sulfate, green vitriol is ferrous sulfate, and white vitriol is zinc sulfate.  Sulfates play a significant role both in the chemical industry and in biological systems. Sulfuric acid is used in lead storage batteries and in the manufacture of nitric acid; copper sulfate is a common algicide. Organisms found near deep-sea thermal vents use sulfates for energy in place of sunlight.

Purities include 99%, 99.9%, 99.99%, 99.999% and 99.9999% which are sometimes referred to as 2N, 3N, 4N, 5N and 6N.

Physical properties may include nanopowder, nano particle, submicron, - 325 mesh, rod, foil, and high surface area carbonate with particle distribution and particle size controlled and certified. We produce larger - 40 mesh, - 100 mesh, -200 mesh range sizes and < 0.5 mm, 2 mm, 5 mm and other mm size shot, granules, lump, flake and pieces, too.

American Elements maintains industrial scale production for all its sulfate products.

American Elements will execute Non-Disclosure or Confidentiality Agreements to protect customer know-how.

AE Sulfate™ products include:

German Korean French Japanese Spanish Chinese (Simplified) Portuguese Russian Chinese (Taiwan) Italian Turkish Polish Dutch Czech Swedish Hungarian Danish Hebrew
Production Catalog Available in 36 Countries and Languages

Recent Research & Development for Sulfates

  • E.M. van der Merwe, C.L. Mathebula, L.C. Prinsloo, Characterization of the surface and physical properties of South African coal fly ash modified by sodium lauryl sulphate (SLS) for applications in PVC composites, Powder Technology, Volume 266, November 2014
  • F. Agrela, M. Cabrera, A.P. Galvín, A. Barbudo, A. Ramirez, Influence of the sulphate content of recycled aggregates on the properties of cement-treated granular materials using Sulphate-Resistant Portland Cement, Construction and Building Materials, Volume 68, 15 October 2014
  • Mathias Maes, Nele De Belie, Resistance of concrete and mortar against combined attack of chloride and sodium sulphate, Cement and Concrete Composites, Volume 53, October 2014
  • M.L. Nehdi, A.R. Suleiman, A.M. Soliman, Investigation of concrete exposed to dual sulfate attack, Cement and Concrete Research, Volume 64, October 2014
  • Yi Liu, Pengran Gao, Xianfu Bu, Guizhi Kuang, Wei Liu, Lixu Lei, Nanocrosses of lead sulphate as the negative active material of lead acid batteries, Journal of Power Sources, Volume 263, 1 October 2014
  • Zanqun Liu, Dehua Deng, Geert De Schutter, Does concrete suffer sulfate salt weathering?, Construction and Building Materials, Volume 66, 15 September 2014
  • Teresa Stryszewska, The change in selected properties of ceramic materials obtained from ceramic brick treated by the sulphate and chloride ions, Construction and Building Materials, Volume 66, 15 September 2014
  • A. Martínez Gabarrón, J.A. Flores Yepes, J.J. Pastor Pérez, J.M. Berná Serna, L.C. Arnold, F.J. Sánchez Medrano, Increase of the flexural strength of construction elements made with plaster (calcium sulfate dihydrate) and common reed (Arundo donax L.), Construction and Building Materials, Volume 66, 15 September 2014
  • Victor Padilla, Akram Alfantazi, Corrosion film breakdown of galvanized steel in sulphate–chloride solutions, Construction and Building Materials, Volume 66, 15 September 2014
  • V. Barranco, A. Garcia-Gomez, M. Kunowsky, A. Linares-Solano, J. Ibañez, M. King, J.M. Rojo, The contribution of sulfate ions and protons to the specific capacitance of microporous carbon monoliths, Journal of Power Sources, Volume 262, 15 September 2014