Zinc Oxide Nanopowder

Z-MITE ™
High Purity ZnO Nanoparticles
CAS 1314-13-2


Product Product Code Order or Specifications
(3N) 99.9% Zinc Oxide (powder) Z-MITE-AP Contact American Elements
(3N) 99.9% Zinc Oxide (dispersion) Z-MITE-AD Contact American Elements
(3N) 99.9% Zinc Oxide Z-MITE-O Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
ZnO 1314-13-2 24848650 14806 MFCD00011300 215-222-5 Oxozinc N/A O=[Zn] InChI=1S/O.Zn XLOMVQKBTHCTTD-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
ZnO 81.37 White Powder 1,975° C (3,587° F) 2,360° C (4,280° F) 5600 kg/m3 79.9241 g/mol 79.924061 Da 0 Safety Data Sheet

High Purity, D50 = +10 nanometer (nm) by SEMOxide IonZ-MITE™ powders and dispersions are inorganic zinc-oxide nanoparticles with antibacterial, antifungal, anti-corrisive, catalytic, and UV filtering properties. Z-MITE-A™ products are uncoated and hydrophilic. Z-MITE-O™ products are coated with an organic silane (1-4%) and are hydrophobic. Particles are available in the size range of 10-200 nm. They are also available as a nanofluid through the AE Nanofluid production group. Nanofluids are generally defined as suspended nanoparticles in solution either using surfactant or surface charge technology. Nanofluid dispersion and coating selection technical guidance is also available. Other nanostructures include nanorods, nanowhiskers, nanohorns, nanopyramids and other nanocomposites. Surface functionalized nanoparticles allow for the particles to be preferentially adsorbed at the surface interface using chemically bound polymers.

Zinc(Zn) atomic and molecular weight, atomic number and elemental symbolZinc (atomic symbol: Zn, atomic number: 30) is a Block D, Group 12, Period 4 element with an atomic weight of 65.38. The number of electrons in each of zinc's shells is 2, 8, 18, 2, and its electron configuration is [Ar] 3d10 4s2. Zinc Bohr ModelThe zinc atom has a radius of 134 pm and a Van der Waals radius of 210 pm. Zinc was discovered by Indian metallurgists prior to 1000 BC and first recognized as a unique element by Rasaratna Samuccaya in 800. Zinc was first isolated by Andreas Marggraf in 1746.Elemental Zinc In its elemental form, zinc has a silver-gray appearance. It is brittle at ordinary temperatures but malleable at 100 °C to 150 °C. It is a fair conductor of electricity, and burns in air at high red producing white clouds of the oxide. Zinc is mined from sulfidic ore deposits. It is the 24th most abundant element in the earth's crust and the fourth most common metal in use (after iron, aluminum, and copper). The name zinc originates from the German word "zin," meaning tin. For more information on zinc, including properties, safety data, research, and American Elements' catalog of zinc products, visit the Zinc Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Warning
H410
N
50/53
60-61
ZH4810000
UN 3077 9/PG 3
2
Environment-Hazardous to the aquatic environment        

ZINC OXIDE SYNONYMS
Oxozinc, Zinc White, Zinc monoxide, Zinci Oxydum, Flowers of zinc, Zincoid, Amalox, Ziradryl, Zincum, Oxydatum, Emanay zinc oxide, zinc, oxo-, Zinci Oxicum, Ketozinc, Nogenol, Permanent White

CUSTOMERS FOR ZINC OXIDE NANOPOWDER HAVE ALSO LOOKED AT
Zinc Bars Zn Cd Se Zinc Foil Tin Bismuth Zinc Alloy Zinc Nanoparticles
Zinc Nitrate Zinc Acetylacetonate Zinc Oxide Sputtering Target Zinc Powder Zinc Acetate
Zinc Oxide Zinc Metal Zinc Pellets Zinc Oxide Pellets Zinc Chloride
Show Me MORE Forms of Zinc

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Zinc

  • N.C. López Zeballos, M.C. García Vior, J. Awruch, L.E. Dicelio, A comparative study of peripheral and non-peripheral zinc (II) phthalocyanines incorporated into mesoporous silica nanoparticles, Dyes and Pigments, Volume 113, February 2015
  • Ying Hu, Yifan Liu, Gyoungmi Kim, Eun Jin Jun, K.M.K. Swamy, Youngmee Kim, Sung-Jin Kim, Juyoung Yoon, Pyrene based fluorescent probes for detecting endogenous zinc ions in live cells, Dyes and Pigments, Volume 113, February 2015
  • S.S. Kurbanov, T.W. Kang, Effect of ultraviolet-illumination and sample ambient on photoluminescence from zinc oxide nanocrystals, Journal of Luminescence, Volume 158, February 2015
  • S. Papaefthymiou, C. Goulas, E. Gavalas, Micro-friction stir welding of titan zinc sheets, Journal of Materials Processing Technology, Volume 216, February 2015
  • Ranjit Thapa, Saurabh Ghosh, S. Sinthika, E. Mathan Kumar, Noejung Park, Magnetic, elastic and optical properties of zinc peroxide (ZnO2): First principles study, Journal of Alloys and Compounds, Volume 620, 25 January 2015
  • Qiao Liu, Zhiqiang Guo, Hongfei Han, Hongbo Tong, Xuehong Wei, Lithium, magnesium, zinc complexes supported by tridentate pincer type pyrrolyl ligands: Synthesis, crystal structures and catalytic activities for the cyclotrimerization of isocyanates, Polyhedron, Volume 85, 8 January 2015
  • Carmen Cretu, Ramona Tudose, Liliana Cseh, Wolfgang Linert, Eleftherios Halevas, Antonios Hatzidimitriou, Otilia Costisor, Athanasios Salifoglou, Schiff base coordination flexibility toward binary cobalt and ternary zinc complex assemblies. The case of the hexadentate ligand N,N'-bis[(2-hydroxybenzilideneamino)-propyl]-piperazine, Polyhedron, Volume 85, 8 January 2015
  • Minggang Zhao, Pangpang Li, Xiaodong Xie, Jihu Su, Wenjun Zheng, Synthesis and structural characterization of 2,6-bis(1,2,4-diazaphospholyl-1-yl)pyridine zinc and 2,6-bis(1,2,4-diazaphospholyl-1-yl)pyrazine copper complexes, Polyhedron, Volume 85, 8 January 2015
  • Priyanka Kundu, Prateeti Chakraborty, Jaydeep Adhikary, Tanmay Chattopadhyay, Roland C. Fischer, Franz A. Mautner, Debasis Das, Influence of co-ligands in synthesis, photoluminescence behavior and catalytic activities of zinc complexes of 2-((E)-((pyridin-2-yl)methylimino)methyl)phenol, Polyhedron, Volume 85, 8 January 2015
  • Qiaoqiao Yin, Ru Qiao, Zhengquan Li, Xiao Li Zhang, Lanlan Zhu, Hierarchical nanostructures of nickel-doped zinc oxide: Morphology controlled synthesis and enhanced visible-light photocatalytic activity, Journal of Alloys and Compounds, Volume 618, 5 January 2015