Silver Chromate

CAS 7784-01-2

Product Product Code Order or Specifications
(2N) 99% Silver Chromate AG-CRAT-02 Contact American Elements
(3N) 99.9% Silver Chromate AG-CRAT-03 Contact American Elements
(4N) 99.99% Silver Chromate AG-CRAT-04 Contact American Elements
(5N) 99.999% Silver Chromate AG-CRAT-05 Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
Ag2CrO4 7784-01-2 24853660 62666 MFCD00003402 232-043-8 disilver dioxido(dioxo
N/A [Ag+].[Ag+].[O-][Cr]([O-])(=O)=O InChI=1S/2Ag.Cr.

PROPERTIES Compound Formula Mol. Wt. Appearance Density

Exact Mass

Monoisotopic Mass Charge MSDS
Ag2CrO4 331.73 N/A N/A 331.730019 329.730356 0 Safety Data Sheet

Chromate IonSilver Chromate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Silver (Ag)atomic and molecular weight, atomic number and elemental symbolSilver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'. For more information on silver, including properties, safety data, research, and American Elements' catalog of silver products, visit the Silver Information Center.

Chromium (Cr) atomic and molecular weight, atomic number and elemental symbolChromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Chromium was first discovered by Louis Nicolas Vauquelin in 1797. It was first isolated in 1798, also by Louis Nicolas Vauquelin. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metal element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it tranforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma' meaning color. For more information on chromium, including properties, safety data, research, and American Elements' catalog of chromium products, visit the Chromium Information Center.

Material Safety Data Sheet MSDS
Signal Word Danger
Hazard Statements H272-H317-H350i-H410
Hazard Codes O,T,N
Risk Codes 49-8-43-50/53
Safety Precautions 53-17-45-60-61
RTECS Number N/A
Transport Information UN 1479 5.1/PG 2
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity Health Hazard Environment-Hazardous to the aquatic environment Flame Over Circle-Oxidizing gases and liquids  

Silver Dichromate, Silver chromate(VI), disilver dioxido(dioxo)chromium, disilver(1+) dioxido(dioxo)chromium

Show Me MORE Forms of Silver

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Silver

  • Liangtao Pu, Kexun Li, Zhihao Chen, Peng Zhang, Xi Zhang, Zhou Fu, Silver electrodeposition on the activated carbon air cathode for performance improvement in microbial fuel cells, Journal of Power Sources, Volume 268, 5 December 2014
  • Yanan Yu, Mingzhe Jia, Huifeng Tian, Jingbo Hu, The fabrication of silver ion implantation-modified electrode and its application in electrocatalytic oxidation of formaldehyde, Journal of Power Sources, Volume 267, 1 December 2014
  • Yuan-Fong Chau, Chih-Chan Hu, Ci-Yao Jheng, Yao-Tsung Tsai, Li-Zen Hsieh, Wayne Yang, Chien-Ying Chiang, Yuh-Sien Sun, Cheng-Min Lee, Numerical investigation of surface plasmon resonance effects on photocatalytic activities using silver nanobeads photodeposited onto a titanium dioxide layer, Optics Communications, Volume 331, 15 November 2014
  • Safaa N. Saud, E. Hamzah, T. Abubakar, H.R. Bakhsheshi-Rad, S. Farahany, A. Abdolahi, M.M. Taheri, Influence of Silver nanoparticles addition on the phase transformation, mechanical properties and corrosion behaviour of Cu–Al–Ni shape memory alloys, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • Osman Ozturk, Ozlem Oter, Serdar Yildirim, Elif Subasi, Kadriye Ertekin, Erdal Celik, Hamdi Temel, Tuning oxygen sensitivity of ruthenium complex exploiting silver nanoparticles, Journal of Luminescence, Volume 155, November 2014
  • Leila Farzampour, Mohammad Amjadi, Sensitive turn-on fluorescence assay of methimazole based on the fluorescence resonance energy transfer between acridine orange and silver nanoparticles, Journal of Luminescence, Volume 155, November 2014
  • Dennis Wittmaier, Norbert Wagner, K. Andreas Friedrich, Hatem M.A. Amin, Helmut Baltruschat, Modified carbon-free silver electrodes for the use as cathodes in lithium–air batteries with an aqueous alkaline electrolyte, Journal of Power Sources, Volume 265, 1 November 2014
  • Yawei Qi, Yaxun Zhou, Libo Wu, Fengjing Yang, Shengxi Peng, Shichao Zheng, Dandan Yin, Enhanced upconversion emissions in Ho3 +/Yb3 + codoped tellurite glasses containing silver NPs, Journal of Non-Crystalline Solids, Volume 402, 15 October 2014
  • Klára Magyari, Razvan Stefan, Dan Cristian Vodnar, Adriana Vulpoi, Lucian Baia, The silver influence on the structure and antibacterial properties of the bioactive 10B2O3− 30Na2O−60P2O2 glass, Journal of Non-Crystalline Solids, Volume 402, 15 October 2014
  • G. Venkateswara Rao, H.D. Shashikala, Optical, dielectric and mechanical properties of silver nanoparticle embedded calcium phosphate glass, Journal of Non-Crystalline Solids, Volume 402, 15 October 2014

Recent Research & Development for Chromates

  • Takuhiro Otsuka, Takeshi Akaboshi, Youkoh Kaizu, Anisotropic Energy-Transfer in Encounter Complex in Aqueous Solutions: Ligand Congeniality between Photo-Excited Mixed-Ligand Tris(α,α’-diimine)-ruthenium(II) [Ru(phen)3-n(4dmb)n]2+ and Tris(malonato)chromate(III) [Cr(mal)3]3-, Inorganica Chimica Acta, Available online 11 July 2014
  • Cong Ruan, Kui Xie, Liming Yang, Bin Ding, Yucheng Wu, Efficient carbon dioxide electrolysis in a symmetric solid oxide electrolyzer based on nanocatalyst-loaded chromate electrodes, International Journal of Hydrogen Energy, Volume 39, Issue 20, 3 July 2014
  • Sébastien Pommiers, Jérôme Frayret, Alain Castetbon, Martine Potin-Gautier, Alternative conversion coatings to chromate for the protection of magnesium alloys, Corrosion Science, Volume 84, July 2014
  • Sylvia Britto, P. Vishnu Kamath, Synthesis, structure refinement and chromate sorption characteristics of an Al-rich bayerite-based layered double hydroxide, Journal of Solid State Chemistry, Volume 215, July 2014
  • S.M. El-Sheikh, M.A. Rabah, Optical properties of calcium chromate 1D-nanorods synthesized at low temperature from secondary resources, Optical Materials, Available online 30 June 2014
  • R.K. Gupta, B.R.W. Hinton, N. Birbilis, The effect of chromate on the pitting susceptibility of AA7075-T651 studied using potentiostatic transients, Corrosion Science, Volume 82, May 2014
  • Sébastien Pommiers-Belin, Jérôme Frayret, Arnaud Uhart, JeanBernard Ledeuil, Jean-Charles Dupin, Alain Castetbon, Martine Potin-Gautier, Determination of the chemical mechanism of chromate conversion coating on magnesium alloys EV31A, Applied Surface Science, Volume 298, 15 April 2014
  • Joshua Olusegun Okeniyi, Olugbenga Adeshola Omotosho, Oluseyi Olanrewaju Ajayi, Cleophas Akintoye Loto, Effect of potassium-chromate and sodium-nitrite on concrete steel-rebar degradation in sulphate and saline media, Construction and Building Materials, Volume 50, 15 January 2014
  • Shanshan Xu, Dehua Dong, Yan Wang, Winston Doherty, Kui Xie, Yucheng Wu, Perovskite chromates cathode with resolved and anchored nickel nano-particles for direct high-temperature steam electrolysis, Journal of Power Sources, Volume 246, 15 January 2014
  • Selvakumar Sellaiyan, Anthony E. Hughes, Suzanne V. Smith, Akira Uedono, James Sullivan, Stephen Buckman, Leaching properties of chromate-containing epoxy films using radiotracers, PALS and SEM, Progress in Organic Coatings, Volume 77, Issue 1, January 2014