Skip to Page Content

Silver Chromate

Ag2CrO4
CAS 7784-01-2


Product Product Code Request Quote
(2N) 99% Silver Chromate AG-CRAT-02 Request Quote
(3N) 99.9% Silver Chromate AG-CRAT-03 Request Quote
(4N) 99.99% Silver Chromate AG-CRAT-04 Request Quote
(5N) 99.999% Silver Chromate AG-CRAT-05 Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Ag2CrO4 7784-01-2 62666 MFCD00003402 232-043-8 disilver dioxido(dioxo
chromium
N/A [Ag+].[Ag+].[O-][Cr]([O-])(=O)=O InChI=1S/2Ag.Cr.
4O/q2*+1;;;;2*-1
OJKANDGLELGDHV-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density Exact Mass Monoisotopic Mass Charge MSDS
Ag2CrO4 331.73 Solid N/A 331.730019 329.730356 0 Safety Data Sheet

Chromate IonSilver Chromate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Silver (Ag)atomic and molecular weight, atomic number and elemental symbolSilver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores, among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'. For more information on silver, including properties, safety data, research, and American Elements' catalog of silver products, visit the Silver element page.

Chromium (Cr) atomic and molecular weight, atomic number and elemental symbolChromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Chromium was first discovered by Louis Nicolas Vauquelin in 1797. It was first isolated in 1798, also by Louis Nicolas Vauquelin. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metal element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it tranforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma' meaning color. For more information on chromium, including properties, safety data, research, and American Elements' catalog of chromium products, visit the Chromium element page.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Danger
Hazard Statements H272-H317-H350i-H410
Hazard Codes O,T,N
Risk Codes 49-8-43-50/53
Safety Precautions 53-17-45-60-61
RTECS Number N/A
Transport Information UN 1479 5.1/PG 2
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity Health Hazard Environment-Hazardous to the aquatic environment Flame Over Circle-Oxidizing gases and liquids  

SILVER CHROMATE SYNONYMS
Silver Dichromate, Silver chromate(VI), disilver dioxido(dioxo)chromium, disilver(1+) dioxido(dioxo)chromium

CUSTOMERS FOR SILVER CHROMATE HAVE ALSO LOOKED AT
Silver 2-Ethylhexanoate Silver Foil Silver Acetate Silver Metal Silver Chloride
Silver Nanoparticles Silver Oxide Silver Oxide Pellets Silver Pellets Silver Powder
Silver Sheets Silver Sputtering Target Tin Silver Zinc Alloy Gold Silver Copper Alloy Silver Sulfate
Show Me MORE Forms of Silver

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Silver

  • Silver decahedral nanoparticles-Enhanced Fluorescence Resonance Energy Transfer sensor for Specific Cell Imaging. Li H, Hu H, Xu D. Anal Chem. 2015 Mar 12.
  • The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC. Artif Cells Nanomed Biotechnol. 2015 Mar 14:1-8.
  • DNA/RNA chimera templates improve the emission intensity and target the accessibility of silver nanocluster-based sensors for human microRNA detection. Shah P, Choi SW, Kim HJ, Cho SK, Thulstrup PW, Bjerrum MJ, Bhang YJ, Ahn JC, Yang SW. Analyst. 2015 Mar 11.
  • TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry. Verleysen E, Van Doren E, Waegeneers N, De Temmerman PJ, Abi Daoud Francisco M, Mast J. J Agric Food Chem. 2015 Mar 13.
  • In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Song Y, Guan R, Lyu F, Kang T, Wu Y, Chen X. Mutat Res. 2014 Nov
  • Analysis of Silver Nanoparticles in Antimicrobial Products Using Surface-Enhanced Raman Spectroscopy (SERS). Guo H, Zhang Z, Xing B, Mukherjee A, Musante C, White JC, He L. Environ Sci Technol. 2015 Mar 16.
  • Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: Evaluation of their innate antimicrobial and catalytic activities. Ajitha B, Reddy YA, Reddy PS. J Photochem Photobiol B. 2015 Mar 2
  • Transfer Printed Silver Nanowire Transparent Conductors for PbS-ZnO Heterojunction Quantum Dot Solar Cells. Hjerrild NE, Neo DC, Kasdi A, Assender HE, Warner JH, Watt AA. ACS Appl Mater Interfaces. 2015 Mar 13.
  • Thermodynamic and spectroscopic properties of oxygen on silver under an oxygen atmosphere. Jones TE, Rocha TC, Knop-Gericke A, Stampfl C, Schlögl R, Piccinin S. Phys Chem Chem Phys. 2015 Mar 11.
  • Optical sintering: improved optical sintering efficiency at the contacts of silver nanowires encapsulated by a graphene layer (small 11/2015). Yang SB, Choi H, Lee da S, Choi CG, Choi SY, Kim ID. Small. 2015 Mar
  • Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients. Suganya KS, Govindaraju K, Kumar VG, Dhas TS, Karthick V, Singaravelu G, Elanchezhiyan M. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Feb 25
  • Interaction of sugar stabilized silver nanoparticles with the T-antigen specific lectin, jacalin from Artocarpus integrifolia. Ayaz Ahmed KB, Mohammed AS, Veerappan A. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Mar 4
  • The size, but not the fluctuating asymmetry of the leaf, of silver birch changes under the gradient influence of emissions of the Karabash Copper Smelter Plant. Koroteeva EV, Veselkin DV, Kuyantseva NB, Chashchina OE. Dokl Biol Sci. 2015 Jan
  • Preparation, Characterization and Anti-bacterial Activity of Silver Nanoparticles-Decorated Graphene Oxide Nanocomposite. Shao W, Liu X, Min H, Dong G, Feng Q, Zuo S. ACS Appl Mater Interfaces. 2015 Mar 11.
  • High performance surface-enhanced Raman scattering from molecular imprinting polymer capsulated silver spheres. Guo Y, Kang L, Chen S, Li X. Phys Chem Chem Phys. 2015 Mar 11.
  • Facile assembly of oppositely charged silver sulfide nanoparticles into photoluminescent mesoporous nanospheres. Tan L, Liu S, Yang Q, Shen YM. Langmuir. 2015 Mar 15.
  • DNA-templated in situ growth of silver nanoparticles on mesoporous silica nanospheres for smart intracellular GSH-controlled release. Liu C, Qing Z, Zheng J, Deng L, Ma C, Li J, Li Y, Yang S, Yang J, Wang J, Tan W, Yang R. Chem Commun (Camb). 2015 Mar 13.
  • High Ethene/Ethane Selectivity in 2,2'-Bipyridine-Based Silver(I) Complexes by Removal of Coordinated Solvent. Cowan MG, McDanel WM, Funke HH, Kohno Y, Gin DL, Noble RD. Angew Chem Int Ed Engl. 2015 Mar 12.
  • Enhancement of electrical conductivity of silver nanowires-networked films via the addition of Cs-added TiO2. Kim S, Lee H, Na S, Jung E, Kang JG, Kim D, Cho SM, Chae H, Chung HK, Kim SB, Lee BW, Kim KE, Lee S, Lee HJ, Kim H, Lee HJ. Nanotechnology. 2015 Mar 27
  • The Impact of Protecting Ligands on the Surface Structure and Antibacterial Activity of Silver Nanoparticles. Padmos JD, Boudreau R, Weaver DF, Zhang P. Langmuir. 2015 Mar 15.

Recent Research & Development for Chromates

  • Partial Purification and Characterization of Chromate Reductase of a Novel Ochrobactrum sp. Strain Cr-B4. Hora A, Shetty VK. Prep Biochem Biotechnol. 2015 Nov 17
  • Chromate and phosphate inhibited each other's uptake and translocation in arsenic hyperaccumulator Pteris vittata L. de Oliveira LM, Lessl JT, Gress J, Tisarum R, Guilherme LR, Ma LQ. Environ Pollut. 2015 Feb
  • Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Sandana Mala JG, Sujatha D, Rose C. Microbiol Res. 2015 Jan
  • Mechanisms of chromate adsorption on boehmite. Johnston CP, Chrysochoou M. J Hazard Mater. 2015 Jan 8
  • Sodium chromate demonstrates some insulin-mimetic properties in the fruit fly Drosophila melanogaster. Perkhulyn NV, Rovenko BM, Zvarych TV, Lushchak OV, Storey JM, Storey KB, Lushchak VI. Comp Biochem Physiol C Toxicol Pharmacol. 2015 Jan
  • Genome sequence of the chromate-resistant bacterium Leucobacter salsicius type strain M1-8(T.). Yun JH, Cho YJ, Chun J, Hyun DW, Bae JW. Stand Genomic Sci. 2013 Dec 31
  • Polysulfide speciation and reactivity in chromate-contaminated soil. Chrysochoou M, Johnston CP. J Hazard Mater. 2015 Jan 8
  • Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. Part 5. Effects of nonoriginal surface coatings into the nature and distribution of chromium and sulfur species in chrome yellow paints. Monico L, Janssens K, Vanmeert F, Cotte M, Brunetti BG, Van der Snickt G, Leeuwestein M, Salvant Plisson J, Menu M, Miliani C. Anal Chem. 2014 Nov 4
  • Correction to using chromate to investigate the impact of natural organics on the surface reactivity of nanoparticulate magnetite. Swindle A, Cozzarelli I, Madden AE. Environ Sci Technol. 2015 Mar 3
  • Using chromate to investigate the impact of natural organics on the surface reactivity of nanoparticulate magnetite. Swindle AL, Cozzarelli IM, Elwood Madden AS. Environ Sci Technol. 2015 Feb 17
  • Coupled redox transformation of chromate and arsenite on ferrihydrite. Cerkez EB, Bhandari N, Reeder RJ, Strongin DR. Environ Sci Technol. 2015 Mar 3
  • Cr localization and speciation in roots of chromate fed Helianthus annuus L. seedlings using synchrotron techniques. de la Rosa G, Castillo-Michel H, Cruz-Jiménez G, Bernal-Alvarado J, Córdova-Fraga T, López-Moreno L, Cotte M. Int J Phytoremediation. 2014
  • Chromate alters root system architecture and activates expression of genes involved in iron homeostasis and signaling in Arabidopsis thaliana. Martínez-Trujillo M, Méndez-Bravo A, Ortiz-Castro R, Hernández-Madrigal F, Ibarra-Laclette E, Ruiz-Herrera LF, Long TA, Cervantes C, Herrera-Estrella L, López-Bucio J. Plant Mol Biol. 2014 Sep
  • Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp. Deng P, Tan X, Wu Y, Bai Q, Jia Y, Xiao H. Exp Ther Med. 2015 Mar
  • Adsorption of chromate and cupric ions onto chitosan-coated cotton gauze. Ferrero F, Tonetti C, Periolatto M. Carbohydr Polym. 2014 Sep 22
  • Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. Thatoi H, Das S, Mishra J, Rath BP, Das N. J Environ Manage. 2014 Dec 15
  • Evaluation of bacterial biosensors to determine chromate bioavailability and to assess ecotoxicity of soils. Coelho C, Branco R, Natal-da-Luz T, Sousa JP, Morais PV. Chemosphere. 2015 Feb 2
  • Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal. Sangvanich T, Ngamcherdtrakul W, Lee R, Morry J, Castro D, Fryxell GE, Yantasee W. J Nanomed Nanotechnol. 2014
  • Chromate induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana. López-Bucio J, Ortiz-Castro R, Ruíz-Herrera LF, Juárez CV, Hernández-Madrigal F, Carreón-Abud Y, Martínez-Trujillo M. Biometals. 2015 Feb 22.
  • Assessing the suitability of 8-OHdG and micronuclei as genotoxic biomarkers in chromate-exposed workers: a cross-sectional study. Li P, Gu Y, Yu S, Li Y, Yang J, Jia G. BMJ Open. 2014 Oct 9