Skip to Page Content

Silver Chromate

Ag2CrO4
CAS 7784-01-2


Product Product Code Request Quote
(2N) 99% Silver Chromate AG-CRAT-02 Request Quote
(3N) 99.9% Silver Chromate AG-CRAT-03 Request Quote
(4N) 99.99% Silver Chromate AG-CRAT-04 Request Quote
(5N) 99.999% Silver Chromate AG-CRAT-05 Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Ag2CrO4 7784-01-2 62666 MFCD00003402 232-043-8 disilver dioxido(dioxo
chromium
N/A [Ag+].[Ag+].[O-][Cr]([O-])(=O)=O InChI=1S/2Ag.Cr.
4O/q2*+1;;;;2*-1
OJKANDGLELGDHV-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density Exact Mass Monoisotopic Mass Charge MSDS
Ag2CrO4 331.73 Solid N/A 331.730019 329.730356 0 Safety Data Sheet

Chromate IonSilver Chromate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Silver (Ag)atomic and molecular weight, atomic number and elemental symbolSilver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores, among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'. For more information on silver, including properties, safety data, research, and American Elements' catalog of silver products, visit the Silver element page.

Chromium (Cr) atomic and molecular weight, atomic number and elemental symbolChromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Chromium was first discovered by Louis Nicolas Vauquelin in 1797. It was first isolated in 1798, also by Louis Nicolas Vauquelin. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metal element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it tranforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma' meaning color. For more information on chromium, including properties, safety data, research, and American Elements' catalog of chromium products, visit the Chromium element page.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Danger
Hazard Statements H272-H317-H350i-H410
Hazard Codes O,T,N
Risk Codes 49-8-43-50/53
Safety Precautions 53-17-45-60-61
RTECS Number N/A
Transport Information UN 1479 5.1/PG 2
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity Health Hazard Environment-Hazardous to the aquatic environment Flame Over Circle-Oxidizing gases and liquids  

SILVER CHROMATE SYNONYMS
Silver Dichromate, Silver chromate(VI), disilver dioxido(dioxo)chromium, disilver(1+) dioxido(dioxo)chromium

CUSTOMERS FOR SILVER CHROMATE HAVE ALSO LOOKED AT
Silver 2-Ethylhexanoate Silver Foil Silver Acetate Silver Metal Silver Chloride
Silver Nanoparticles Silver Oxide Silver Oxide Pellets Silver Pellets Silver Powder
Silver Sheets Silver Sputtering Target Tin Silver Zinc Alloy Gold Silver Copper Alloy Silver Sulfate
Show Me MORE Forms of Silver

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Silver

  • The Environmental Legacy of Copper Metallurgy and Mongol Silver Smelting Recorded in Yunnan Lake Sediments. Aubrey L. Hillman, Mark B. Abbott, JunQing Yu, Daniel J. Bain, and TzeHuey Chiou-Peng. Environ. Sci. Technol.: February 16, 2015
  • Multifunctional Aptamer-Silver Conjugates as Theragnostic Agents for Specific Cancer Cell Therapy and Fluorescence-Enhanced Cell Imaging. Hui Li, Hongting Hu, Yaju Zhao, Xiang Chen, Wei Li, Weibing Qiang, and Danke Xu. Anal. Chem.: February 16, 2015
  • Polysulfone Membranes Modified with Bioinspired Polydopamine and Silver Nanoparticles Formed in situ to Mitigate Biofouling. Li Tang, Kenneth John T. Livi, and Kai Loon Chen. Environ. Sci. Technol. Lett.: February 16, 2015
  • Adsorption of Anionic Thiols on Silver Nanoparticles. Bolei Xu, Grazia Gonella, Brendan G. DeLacy, and Hai-Lung Dai. J. Phys. Chem. C: February 12, 2015
  • Fluoride-Induced Reduction of Ag(I) Leading to Formation of Silver Mirrors and Luminescent Ag-Nanoparticles. Krishnendu Maity, Dillip Kumar Panda, Eric Lochner, and Sourav Saha. J. Am. Chem. Soc.: February 11, 2015
  • Light-responsive plasmonic arrays consisting of silver nanocubes and a photoisomerable matrix. Petr A. Ledin, Michael Russell, Jeffrey A Geldmeier, Ihor Tkachenko, Mahmoud A. Mahmoud, Valery V Shevchenko, Mostafa A. El-Sayed, and Vladimir V. Tsukruk. ACS Appl. Mater. Interfaces: February 11, 2015
  • Theoretical Study on Electroreduction of p-Nitrothiophenol on Silver and Gold Electrode Surfaces. Liu-Bin Zhao, Jia-Li Chen, Meng Zhang, De-Yin Wu, and Zhong-Qun Tian. J. Phys. Chem. C: February 10, 2015
  • High performance low-cost antibody microarrays using enzyme mediated silver amplification. Gina Zhou, Sebastien Bergeron, and David Juncker. J. Proteome Res.: February 10, 2015
  • Biomimetic oxidative coupling of sinapyl acetate by silver oxide: preferential formation of -O-4 type structures. Takao Kishimoto, Nana Takahashi, Masahiro Hamada, and Noriyuki Nakajima. J. Agric. Food Chem.: February 5, 2015
  • Absorption Spectra of Aryl Thiol-Coated Silver Nanoclusters: A Time-Dependent Density-Functional Study. Benjamin Bousquet, Mohamed Cherif, Kunqiang Huang, and Franck Rabilloud. J. Phys. Chem. C: February 4, 2015

Recent Research & Development for Chromates

  • Coupled Redox Transformation of Chromate and Arsenite on Ferrihydrite. Elizabeth B. Cerkez, Narayan Bhandari, Richard J Reeder, and Daniel R. Strongin. Environ. Sci. Technol.: February 6, 2015
  • Using Chromate to Investigate the Impact of Natural Organics on the Surface Reactivity of Nanoparticulate Magnetite. Andrew L. Swindle, Isabelle M. Cozzarelli, and Andrew S. Elwood Madden. Environ. Sci. Technol.: January 21, 2015
  • Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Spectromicroscopic Methods. Part 5. Effects of Nonoriginal Surface Coatings into the Nature and Distribution of Chromium and Sulfur Species in Chrome Yellow Paints. Letizia Monico, Koen Janssens, Frederik Vanmeert, Marine Cotte, Brunetto Giovanni Brunetti, Geert Van der Snickt, Margje Leeuwestein, Johanna Salvant Plisson, Michel Menu, and Costanza Miliani. Anal. Chem.: October 10, 2014
  • Monitoring Cr Intermediates and Reactive Oxygen Species with Fluorescent Probes during Chromate Reduction. Zachary DeLoughery, Michal W. Luczak, and Anatoly Zhitkovich. Chem. Res. Toxicol.: March 19, 2014
  • Solubility and Metastable Zone Width of Sodium Chromate Tetrahydrate. Liping Wang, Jiaoyu Peng, Lili Li, Haitao Feng, Yaping Dong, Wu Li, Jian Liang, and Zhulin Zheng. J. Chem. Eng. Data: October 18, 2013
  • Perovskite Chromates Cathode with Exsolved Iron Nanoparticles for Direct High-Temperature Steam Electrolysis. Yuanxin Li, Yan Wang, Winston Doherty, Kui Xie, and Yucheng Wu. ACS Appl. Mater. Interfaces: August 9, 2013
  • Cr(VI) Trioxide as a Starting Material for the Synthesis of Novel Zero-, One-, and Two-Dimensional Uranyl Dichromates and Chromate-Dichromates. Oleg I. Siidra, Evgeny V. Nazarchuk, Anna N. Suknotova, Roman A. Kayukov, and Sergey V. Krivovichev. Inorg. Chem.: March 27, 2013
  • Chromate Reduction in Highly Alkaline Groundwater by Zerovalent Iron: Implications for Its Use in a Permeable Reactive Barrier. Samuel J. Fuller, Douglas I. Stewart, and Ian T. Burke. Ind. Eng. Chem. Res.: March 2, 2013
  • Spectroscopy and Photochemistry of Sodium Chromate Ester Cluster Ions. Sydney H. Kaufman and J. Mathias Weber. J. Phys. Chem. A: February 19, 2013
  • A Cationic Metal–Organic Solid Solution Based on Co(II) and Zn(II) for Chromate Trapping. Honghan Fei, Cari S. Han, Jeremy C. Robins, and Scott R. J. Oliver. Chem. Mater.: February 5, 2013