Skip to Page Content

Silver Nanoparticle Ink

High Purity Nano Scale (nm) Ag
CAS 7440-22-4


Product Product Code Request Quote
(2N) 99% Silver Nanoparticle Ink AG-M-02-NPI Request Quote
(2N5) 99.5% Silver Nanoparticle Ink AG-M-025-NPI Request Quote
(3N) 99.9% Silver Nanoparticle Ink AG-M-03-NPI Request Quote
(3N5) 99.95% Silver Nanoparticle Ink AG-M-035-NPI Request Quote
(4N) 99.99% Silver Nanoparticle Ink AG-M-04-NPI Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Ag 7440-22-4 23954 MFCD00003397 231-131-3 silver N/A [Ag] InChI=1S/Ag BQCADISMDOOEFD-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance True Density Bulk Density Melting Point Boiling Point Average Particle Size Size Range Crystal Phase Specific Surface Area Morphology MSDS
107.87 Silver 10490 kg/cm3 0.312 g/cm3 961.78 °C 2162 °C <100 nm 80-100 nm cubic 5.37  m2/g spherical Safety Data Sheet

High Purity, D50 = +10 nanometer (nm) by SEMSilver (Ag) Nanoparticle Ink, nanodots or nanopowder are spherical or nanoflake high surface area metal particles with properties and uses that include inhibiting transmission of HIV and other viruses.  Nanoscale Silver Particles are available in the size range of 10-200 nm, with specific surface area (SSA) in the 30-60 m 2 /g range and also available as flakes with an average particle size of  2-10 micron range with a specific surface area of approximately 40-80 m 2 /g. Nano Silver Particles are also available in Ultra high purity and high purity and coated and dispersed forms. They are also available as a nanofluid through the AE Nanofluid production group. Nanofluids are generally defined as suspended nanoparticles in solution either using surfactant or surface charge technology. Nanofluid dispersion and coating selection technical guidance is also available. Other nanostructures include nanorods, nanowhiskers, nanohorns, nanopyramids and other nanocomposites. Surface functionalized nanoparticles allow for the particles to be preferentially adsorbed at the surface interface using chemically bound polymers.

Development research is underway in Nano Electronics and Photonics materials, such as MEMS and NEMS, Bio Nano Materials, such as Biomarkers, Bio Diagnostics & Bio Sensors, and Related Nano Materials, for use in Polymers, Textiles, Fuel Cell Layers, Composites and Solar Energy materials. Nanopowders are analyzed for chemical composition by ICP, particle size distribution (PSD) by laser diffraction, and for Specific Surface Area (SSA) by BET multi-point correlation techniques. High surface areas can also be achieved using solutions and using thin film by sputtering targets and evaporation technology using pellets, rod and foil. Applications for silver nanocrystals and flakes include as an anti-microbial, anti-bacterial, anti-viral, anti-biotic and anti-fungal agent when incorporated in coatings, nanofiber, first aid bandages, dressings, sticking plasters, plastics, soap and textiles, in self cleaning fabrics, and as conductive filler. It is also used in nanowire and in certain catalyst applications. S-MITE HIV Inhibator is a proprietary form of silver nano powder that has been shown to deactivate HIV by inhibiting the virus from attaching to the host with undetectable levels of cytotoxicity. HIV medical health creams may prevent sexual transmission of HIV-1. See the Silver Nanoparticles Produc Data Sheet. Silver Nano Particles are generally immediately available in most volumes. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Silver (Ag)atomic and molecular weight, atomic number and elemental symbolSilver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores, among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'. For more information on silver, including properties, safety data, research, and American Elements' catalog of silver products, visit the Silver element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

CUSTOMERS FOR SILVER NANOPARTICLE INK HAVE ALSO LOOKED AT
Silver 2-Ethylhexanoate Silver Foil Silver Acetate Silver Metal Silver Chloride
Silver Nanoparticles Silver Oxide Silver Oxide Pellets Silver Pellets Silver Powder
Silver Sheets Silver Sputtering Target Tin Silver Zinc Alloy Gold Silver Copper Alloy Silver Sulfate
Show Me MORE Forms of Silver

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Silver

  • Silver decahedral nanoparticles-Enhanced Fluorescence Resonance Energy Transfer sensor for Specific Cell Imaging. Li H, Hu H, Xu D. Anal Chem. 2015 Mar 12.
  • The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC. Artif Cells Nanomed Biotechnol. 2015 Mar 14:1-8.
  • DNA/RNA chimera templates improve the emission intensity and target the accessibility of silver nanocluster-based sensors for human microRNA detection. Shah P, Choi SW, Kim HJ, Cho SK, Thulstrup PW, Bjerrum MJ, Bhang YJ, Ahn JC, Yang SW. Analyst. 2015 Mar 11.
  • TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry. Verleysen E, Van Doren E, Waegeneers N, De Temmerman PJ, Abi Daoud Francisco M, Mast J. J Agric Food Chem. 2015 Mar 13.
  • In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Song Y, Guan R, Lyu F, Kang T, Wu Y, Chen X. Mutat Res. 2014 Nov
  • Analysis of Silver Nanoparticles in Antimicrobial Products Using Surface-Enhanced Raman Spectroscopy (SERS). Guo H, Zhang Z, Xing B, Mukherjee A, Musante C, White JC, He L. Environ Sci Technol. 2015 Mar 16.
  • Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: Evaluation of their innate antimicrobial and catalytic activities. Ajitha B, Reddy YA, Reddy PS. J Photochem Photobiol B. 2015 Mar 2
  • Transfer Printed Silver Nanowire Transparent Conductors for PbS-ZnO Heterojunction Quantum Dot Solar Cells. Hjerrild NE, Neo DC, Kasdi A, Assender HE, Warner JH, Watt AA. ACS Appl Mater Interfaces. 2015 Mar 13.
  • Thermodynamic and spectroscopic properties of oxygen on silver under an oxygen atmosphere. Jones TE, Rocha TC, Knop-Gericke A, Stampfl C, Schlögl R, Piccinin S. Phys Chem Chem Phys. 2015 Mar 11.
  • Optical sintering: improved optical sintering efficiency at the contacts of silver nanowires encapsulated by a graphene layer (small 11/2015). Yang SB, Choi H, Lee da S, Choi CG, Choi SY, Kim ID. Small. 2015 Mar
  • Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients. Suganya KS, Govindaraju K, Kumar VG, Dhas TS, Karthick V, Singaravelu G, Elanchezhiyan M. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Feb 25
  • Interaction of sugar stabilized silver nanoparticles with the T-antigen specific lectin, jacalin from Artocarpus integrifolia. Ayaz Ahmed KB, Mohammed AS, Veerappan A. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Mar 4
  • The size, but not the fluctuating asymmetry of the leaf, of silver birch changes under the gradient influence of emissions of the Karabash Copper Smelter Plant. Koroteeva EV, Veselkin DV, Kuyantseva NB, Chashchina OE. Dokl Biol Sci. 2015 Jan
  • Preparation, Characterization and Anti-bacterial Activity of Silver Nanoparticles-Decorated Graphene Oxide Nanocomposite. Shao W, Liu X, Min H, Dong G, Feng Q, Zuo S. ACS Appl Mater Interfaces. 2015 Mar 11.
  • High performance surface-enhanced Raman scattering from molecular imprinting polymer capsulated silver spheres. Guo Y, Kang L, Chen S, Li X. Phys Chem Chem Phys. 2015 Mar 11.
  • Facile assembly of oppositely charged silver sulfide nanoparticles into photoluminescent mesoporous nanospheres. Tan L, Liu S, Yang Q, Shen YM. Langmuir. 2015 Mar 15.
  • DNA-templated in situ growth of silver nanoparticles on mesoporous silica nanospheres for smart intracellular GSH-controlled release. Liu C, Qing Z, Zheng J, Deng L, Ma C, Li J, Li Y, Yang S, Yang J, Wang J, Tan W, Yang R. Chem Commun (Camb). 2015 Mar 13.
  • High Ethene/Ethane Selectivity in 2,2'-Bipyridine-Based Silver(I) Complexes by Removal of Coordinated Solvent. Cowan MG, McDanel WM, Funke HH, Kohno Y, Gin DL, Noble RD. Angew Chem Int Ed Engl. 2015 Mar 12.
  • Enhancement of electrical conductivity of silver nanowires-networked films via the addition of Cs-added TiO2. Kim S, Lee H, Na S, Jung E, Kang JG, Kim D, Cho SM, Chae H, Chung HK, Kim SB, Lee BW, Kim KE, Lee S, Lee HJ, Kim H, Lee HJ. Nanotechnology. 2015 Mar 27
  • The Impact of Protecting Ligands on the Surface Structure and Antibacterial Activity of Silver Nanoparticles. Padmos JD, Boudreau R, Weaver DF, Zhang P. Langmuir. 2015 Mar 15.