Silver Nanoparticle Ink

High Purity Nano Scale (nm) Ag
CAS 7440-22-4


Product Product Code Order or Specifications
(2N) 99% Silver Nanoparticle Ink AG-M-02-NPI Contact American Elements
(2N5) 99.5% Silver Nanoparticle Ink AG-M-025-NPI Contact American Elements
(3N) 99.9% Silver Nanoparticle Ink AG-M-03-NPI Contact American Elements
(3N5) 99.95% Silver Nanoparticle Ink AG-M-035-NPI Contact American Elements
(4N) 99.99% Silver Nanoparticle Ink AG-M-04-NPI Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Ag 7440-22-4 24880887 N/A MFCD00003397 231-131-3 N/A N/A [Ag] InChI=1S/Ag BQCADISMDOOEFD-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance True Density Bulk Density Melting Point Boiling Point Average Particle Size Size Range Crystal Phase Specific Surface Area Morphology MSDS
107.87 Silver 10490 kg/cm3 0.312 g/cm3 961.78 °C 2162 °C <100 nm 80-100 nm cubic 5.37  m2/g spherical Safety Data Sheet

High Purity, D50 = +10 nanometer (nm) by SEMSilver (Ag) Nanoparticle Ink, nanodots or nanopowder are spherical or nanoflake high surface area metal particles with properties and uses that include inhibiting transmission of HIV and other viruses. See Material Safety Data Sheet (MSDS) and recent research.  Nanoscale Silver Particles are available in the size range of 10-200 nm, with specific surface area (SSA) in the 30-60 m 2 /g range and also available as flakes with an average particle size of  2-10 micron range with a specific surface area of approximately 40-80 m 2 /g. Nano Silver Particles are also available in Ultra high purity and high purity and coated and dispersed forms. They are also available as a nanofluid through the AE Nanofluid production group. Nanofluids are generally defined as suspended nanoparticles in solution either using surfactant or surface charge technology. Nanofluid dispersion and coating selection technical guidance is also available. Other nanostructures include nanorods, nanowhiskers, nanohorns, nanopyramids and other nanocomposites. Surface functionalized nanoparticles allow for the particles to be preferentially adsorbed at the surface interface using chemically bound polymers.

Development research is underway in Nano Electronics and Photonics materials, such as MEMS and NEMS, Bio Nano Materials, such as Biomarkers, Bio Diagnostics & Bio Sensors, and Related Nano Materials, for use in Polymers, Textiles, Fuel Cell Layers, Composites and Solar Energy materials. Nanopowders are analyzed for chemical composition by ICP, particle size distribution (PSD) by laser diffraction, and for Specific Surface Area (SSA) by BET multi-point correlation techniques. Novel nanotechnology applications also include Quantum Dots. High surface areas can also be achieved using solutions and using thin film by sputtering targets and evaporation technology using pellets, rod and foil.. Applications for silver nanocrystals and flakes include as an anti-microbial, anti-bacterial, anti-viral, anti-biotic and anti-fungal agent when incorporated in coatings, nanofiber, first aid bandages, dressings, sticking plasters, plastics, soap and textiles, in self cleaning fabrics, and as conductive filler. It is also used in nanowire and in certain catalyst applications. S-MITE HIV Inhibator is a proprietary form of silver nano powder that has been shown to deactivate HIV by inhibiting the virus from attaching to the host with undetectable levels of cytotoxicity. HIV medical health creams may prevent sexual transmission of HIV-1. See the Silver Nanoparticles Product  Data Sheet. Silver Nano Particles are generally immediately available in most volumes. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Silver (Ag)atomic and molecular weight, atomic number and elemental symbolSilver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'. For more information on silver, including properties, safety data, research, and American Elements' catalog of silver products, visit the Silver Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

CUSTOMERS FOR SILVER NANOPARTICLE INK HAVE ALSO LOOKED AT
Show Me MORE Forms of Silver

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Silver

  • Arash Ahmadivand, Saeed Golmohammadi, Surface plasmon resonances and plasmon hybridization in compositional Al/Al2O3/SiO2 nanorings at the UV spectrum to the near infrared region (NIR), Optics & Laser Technology, Volume 66, March 2015
  • Ying Qi, Hongxia Qi, Qinxin Wang, Zhou Chen, Zhan Hu, The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon, Optics & Laser Technology, Volume 66, March 2015
  • Jae-Hyeok Jeong, Ji-Soo Kim, Jochen Campo, Seung-Heon Lee, Woo-Yong Jeon, Wim Wenseleers, Mojca Jazbinsek, Hoseop Yun, O-Pil Kwon, N-Methylquinolinium derivatives for photonic applications: Enhancement of electron-withdrawing character beyond that of the widely-used N-methylpyridinium, Dyes and Pigments, Volume 113, February 2015
  • M.A. Pogosova, D.I. Provotorov, A.A. Eliseev, M. Jansen, P.E. Kazin, Synthesis and characterization of the Bi-for-Ca substituted copper-based apatite pigments, Dyes and Pigments, Volume 113, February 2015
  • Jie Sha, Cuiyan Tong, Haixia Zhang, Lijuan Feng, Bingxin Liu, Changli Lü, CdTe QDs functionalized mesoporous silica nanoparticles loaded with conjugated polymers: A facile sensing platform for cupric (II) ion detection in water through FRET, Dyes and Pigments, Volume 113, February 2015
  • Ho Jun Song, Eui Jin Lee, Doo Hun Kim, Tae Ho Lee, Munju Goh, Sangkug Lee, Doo Kyung Moon, Solution-processed interlayer of discotic-based small molecules for organic photovoltaic devices: Enhancement of both the open-circuit voltage and the fill factor, Dyes and Pigments, Volume 113, February 2015
  • Mircea Grigoras, Ana Maria Catargiu, Teofilia Ivan, Loredana Vacareanu, Boris Minaev, Evgeniy Stromylo, Tuning optical and electronic properties of poly(4,4'-triphenylamine vinylene)s by post-modification reactions, Dyes and Pigments, Volume 113, February 2015
  • Bin Tang, Lu Sun, Jingliang Li, Jasjeet Kaur, Haijin Zhu, Si Qin, Ya Yao, Wu Chen, Xungai Wang, Functionalization of bamboo pulp fabrics with noble metal nanoparticles, Dyes and Pigments, Volume 113, February 2015
  • Kun Zhou, Chao Qin, Li-Kai Yan, Wen-E Li, Xin-Long Wang, Hai-Ning Wang, Kui-Zhan Shao, Zhong-Min Su, Rational synthesis, structural characterization and theoretical exploration on third-order nonlinear optical properties of isolated Agn (n = 5, 8, 12) alkynyl clusters, Dyes and Pigments, Volume 113, February 2015
  • Xiaoyu Liu, Yali Guo, Dan Wang, Xiaolong Yang, Weisheng Liu, Wenwu Qin, Graphene oxide functionalization with aminocoumarin nanosheet fluorescent dye: Preparation, electrochemistry, spectroscopy and imaging in the living cells, Dyes and Pigments, Volume 113, February 2015