Aluminum Iron Alloy

Al-Fe Metal Alloy


Product Product Code Order or Specifications
Al-80% Fe-20% AL-FE-01-P.20FE Contact American Elements
Al-50% Fe-50% AL-FE-01-P.50FE Contact American Elements
Al-46% Fe-25% AL-FE-01-P.25FE Contact American Elements


Aluminum Iron is one of numerous metal alloys sold by American Elements under the tradename AE Alloys™. Aluminum Iron is available as bar, Ingot, ribbon, wire, shot, sheet, and foil. Ultra high purity and high purity forms also include metal powder, submicron powder and nanoscale, targets for thin film deposition, and pellets for evaporation. Aluminum Iron is generally immediately available in most volumes. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Primary applications include bearing assembly, ballast, casting, step soldering, and radiation shielding.

Aluminum (Al) atomic and molecular weight, atomic number and elemental symbolAluminum, also known as Aluminium, (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element.Aluminum Bohr ModelAluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. It wasn't until 1825 that Aluminum was first isolated by Hans Christian Oersted. Aluminum is a silvery gray metallic metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental Aluminum Although it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements it imparts a variety of useful properties. Aluminum was first predicted by Antoine Lavoisierin 1787 and first isolated by Friedrich Wöhler in 1827. For more information on aluminum, including properties, safety data, research, and American Elements' catalog of aluminum products, visit the Aluminum Information Center.

Iron (Fe) atomic and molecular weight, atomic number and elemental symbolIron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2.Iron Bohr Model The iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Elemental Iron Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite , hematite, goethite, limonite, or siderite. Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron Information Center.



CUSTOMERS FOR ALUMINUM IRON ALLOY HAVE ALSO LOOKED AT
Show Me MORE Forms of Aluminum

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Aluminum

  • Jung-Ryul Lee, Jae-Kyeong Jang, Mijin Choi, Cheol-Won Kong, Visualization and simulation of a linear explosive-induced pyroshock wave using Q-switched laser and phased array transducers in a space launcher composite structure, Optics & Laser Technology, Volume 67, April 2015
  • Jia Liu, Shichun Jiang, Yan Shi, Yulin Kuang, Genzhe Huang, Hong Zhang, Laser fusion–brazing of aluminum alloy to galvanized steel with pure Al filler powder, Optics & Laser Technology, Volume 66, March 2015
  • Arash Ahmadivand, Saeed Golmohammadi, Surface plasmon resonances and plasmon hybridization in compositional Al/Al2O3/SiO2 nanorings at the UV spectrum to the near infrared region (NIR), Optics & Laser Technology, Volume 66, March 2015
  • Jin Wang, Hui-Ping Wang, Xiaojie Wang, Haichao Cui, Fenggui Lu, Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy, Optics & Laser Technology, Volume 66, March 2015
  • Ying Qi, Hongxia Qi, Qinxin Wang, Zhou Chen, Zhan Hu, The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon, Optics & Laser Technology, Volume 66, March 2015
  • G.F. Sun, K. Wang, R. Zhou, Z.P. Tong, X.Y. Fang, Effect of annealing on microstructure and mechanical properties of laser deposited Co-285+WC coatings, Optics & Laser Technology, Volume 66, March 2015
  • B.S. Yilbas, C. Karatas, Halil Karakoc, B.J. Abdul Aleem, S. Khan, N. Al-Aqeeli, Laser surface treatment of aluminum based composite mixed with B4C particles, Optics & Laser Technology, Volume 66, March 2015
  • Paolo Mazzoleni, Fabio Matta, Emanuele Zappa, Michael A. Sutton, Alfredo Cigada, Gaussian pre-filtering for uncertainty minimization in digital image correlation using numerically-designed speckle patterns, Optics and Lasers in Engineering, Volume 66, March 2015
  • Chia-Hung Hung, Fuh-Yu Chang, Tien-Li Chang, Yu-Ting Chang, Kai-Wen Huang, Po-Chin Liang, Micromachining NiTi tubes for use in medical devices by using a femtosecond laser, Optics and Lasers in Engineering, Volume 66, March 2015
  • Cong Liu, Xingyi Zhang, Jun Zhou, Youhe Zhou, The coherent gradient sensor for thin film curvature measurements in multiple media, Optics and Lasers in Engineering, Volume 66, March 2015

Recent Research & Development for Iron

  • Zhi-kai Chen, Shu-chao Lu, Xi-bin Song, Haifeng Zhang, Wan-shi Yang, Hong Zhou, Effects of bionic units on the fatigue wear of gray cast iron surface with different shapes and distributions, Optics & Laser Technology, Volume 66, March 2015
  • Z. Karoly, J. Szepvolgyi, W. Kaszuwara, O. Łabędź, M. Bystrzejewski, Influence of ferrite stabilizing elements and Co on structure and magnetic properties of carbon-encapsulated iron nanoparticles synthesized in thermal plasma jet, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Fei Liu, Yehua Jiang, Han Xiao, Jun Tan, Study on fragmentation and dissolution behavior of carbide in a hot-rolled hypereutectic high chromium cast iron, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • J. O’Flynn, S.F. Corbin, The influence of iron powder size on pore formation, densification and homogenization during blended elemental sintering of Ti–2.5Fe, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • V.S. Rudnev, M.V. Adigamova, I.V. Lukiyanchuk, I.A. Tkachenko, V.P. Morozova, Structure and magnetic characteristics of iron-modified titania layers on titanium, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • L. Yang, F. Gao, R.J. Kurtz, X.T. Zu, Atomistic simulations of helium clustering and grain boundary reconstruction in alpha-iron, Acta Materialia, Volume 82, 1 January 2015
  • Jin Gi Hong, Yongsheng Chen, Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide, Journal of Membrane Science, Volume 473, 1 January 2015
  • Q.C. Fan, X.Q. Jiang, Z.H. Zhou, W. Ji, H.Q. Cao, Constitutive relationship and hot deformation behavior of Armco-type pure iron for a wide range of temperature, Materials & Design, Volume 65, January 2015
  • Uğur Çavdar, Bekir Sadık Ünlü, Ahmet Murat Pinar, Enver Atik, Mechanical properties of heat treated iron based compacts, Materials & Design, Volume 65, January 2015
  • Adrian H.A. Lutey, Alessandro Fortunato, Alessandro Ascari, Simone Carmignato, Claudio Leone, Laser cutting of lithium iron phosphate battery electrodes: Characterization of process efficiency and quality, Optics & Laser Technology, Volume 65, January 2015