Skip to Page Content

Aluminum Sulfide

High Purity Al2S3
CAS 1302-81-4


Product Product Code Request Quote
(5N) 99.999% Aluminum Sulfide Powder AL-S-05-P Request Quote
(5N) 99.999% Aluminum Sulfide Ingot AL-S-05-I Request Quote
(5N) 99.999% Aluminum Sulfide Chunk AL-S-05-CK Request Quote
(5N) 99.999% Aluminum Sulfide Lump AL-S-05-L Request Quote
(5N) 99.999% Aluminum Sulfide Sputtering Target AL-S-05-ST Request Quote
(5N) 99.999% Aluminum Sulfide Wafer AL-S-05-WSX Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Al2S3 1302-81-4 24860110 159369 MFCD00014162 215-109-0 dialuminum trisulfide N/A [Al+3].[Al+3].[S-2].[S-2].[S-2] InChI=1S/2Al.3S/q2*+3;3*-2 COOGPNLGKIHLSK-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density Exact Mass Monoisotopic Mass Charge MSDS
Al2S3 150.16 gray solid 1,100° C
(2,012° F)
1,500° C
(2,732° F)
2.32 g/cm3 149.879289 149.879288 Da 0 Safety Data Sheet

Sulfide IonAluminum Sulfide is a moderately water and acid soluble Aluminum source for uses compatible with sulfates. Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles () and deposited utilizing sputtering targets and evaporation materials for uses such as solar energy materials and fuel cells. Aluminum Sulfide is generally immediately available in most volumes. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale elemental powders and suspensions, as alternative high surface area forms, may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Aluminum (Al) atomic and molecular weight, atomic number and elemental symbolAluminum, also known as Aluminium, (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element.Aluminum Bohr ModelAluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. It wasn't until 1825 that Aluminum was first isolated by Hans Christian Oersted. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental Aluminum Although it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements it imparts a variety of useful properties. Aluminum was first predicted by Antoine Lavoisierin 1787 and first isolated by Friedrich Wöhler in 1827. For more information on aluminum, including properties, safety data, research, and American Elements' catalog of aluminum products, visit the Aluminum element page.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

ALUMINUM SULFIDE SYNONYMS
Aluminum sulfide (Al2S3), dialuminum sulfur(-2) dihydride anion, sulfanylidene-sulfanylidenealumanylsulfanyl-alumane, Dialuminium trisulphide, thioxo-(thioxoalumanylthio)alumane, sulfanylidene-sulfanylidenealumanylsulfanylalumane, aluminum sulfide (2:3), aluminum sesquisulfide

CUSTOMERS FOR ALUMINUM SULFIDE HAVE ALSO LOOKED AT
Aluminum Wire Aluminum Copper Silicon Metal Aluminum Oxide Pellets Aluminum Metal Aluminum Acetate
Aluminum Foil Aluminum Acetylacetonate Aluminum Pellets Aluminum Vanadium Alloy Aluminum Chloride
Aluminum Nanoparticles Aluminum Powder Aluminum Sputtering Target Aluminum Nitrate Aluminum Oxide
Show Me MORE Forms of Aluminum

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Aluminum

  • Facile and environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance oxide thin-film transistors. Wangying Xu, Han Wang, Fangyan Xie, Jian Chen, Hong Tao Cao, and Jianbin Xu. ACS Appl. Mater. Interfaces: February 13, 2015
  • Effect of the Polymer Concentration on the Rayleigh-Instability-Type Transformation in Polymer Thin Films Coated in the Nanopores of Anodic Aluminum Oxide Templates. Chia-Chan Tsai and Jiun-Tai Chen. Langmuir: February 5, 2015
  • Structural Origin of Unusual CO2 Adsorption Behavior of a Small-Pore Aluminum Bisphosphonate MOF. Philip L. Llewellyn, Miquel Garcia-Rates, Lucia Gaberová, Stuart R. Miller, Thomas Devic, Jean-Claude Lavalley, Sandrine Bourrelly, Emily Bloch, Yaroslav Filinchuk, Paul A. Wright, Christian Serre, Alexandre Vimont, and Guillaume Maurin. J. Phys. Chem. C: February 4, 2015
  • Engineered Therapeutic-Releasing Nanoporous Anodic Alumina-Aluminum Wires with Extended Release of Therapeutics. Cheryl Suwen Law, Abel Santos, Tushar Kumeria, and Dusan Losic. ACS Appl. Mater. Interfaces: January 27, 2015
  • Proton and Aluminum Binding Properties of Organic Acids in Surface Waters of the Northeastern U.S.. Habibollah Fakhraei and Charles T. Driscoll. Environ. Sci. Technol.: January 27, 2015
  • Anchoring and Bending of Pentacene on Aluminum. Anu Baby, Guido Fratesi, Shital R. Vaidya, Laerte L. Patera, Cristina Africh, Luca Floreano, and Gianpaolo Brivio. J. Phys. Chem. C: January 27, 2015
  • Insertion of Benzonitrile into Al–N and Ga–N Bonds: Formation of Fused Carbatriaza-Gallanes/Alanes and Their Subsequent Synthesis from Amidines and Trimethyl-Gallium/Aluminum. K. Maheswari, A. Ramakrishna Rao, and N. Dastagiri Reddy. Inorg. Chem.: January 26, 2015
  • Mild Dehydrogenation of Ammonia Borane Complexed with Aluminum Borohydride. Iurii Dovgaliuk, Cécile S. Le Duff, Koen Robeyns, Michel Devillers, and Yaroslav Filinchuk. Chem. Mater.: January 15, 2015
  • The Formation Mechanism of 3D Porous Anodized Aluminum Oxide Templates from an Aluminum Film with Copper Impurities. Johannes Vanpaemel, Alaa M. Abd-Elnaiem, Stefan De Gendt, and Philippe M. Vereecken. J. Phys. Chem. C: January 7, 2015
  • Hydrothermal Synthesis and Characterization of Aluminum-Free Mn- Zeolite: A Catalyst for Phenol Hydroxylation. Zhen He, Juan Wu, Bingying Gao, and Hongyun He. ACS Appl. Mater. Interfaces: January 3, 2015

Recent Research & Development for Sulfides

  • Intermolecular Interaction in the Formaldehyde – Dimethyl Ether and Formaldehyde – Dimethyl Sulfide Complexes Investigated by Fourier Transform Microwave Spectroscopy and Ab Initio Calculations. Yoshio Tatamitani, Yoshiyuki Kawashima, Yoshihiro Osamura, and Eizi Hirota. J. Phys. Chem. A: February 13, 2015
  • Pyridine-Biquinoline-Metal Complexes for Sensing Pyrophosphate and Hydrogen Sulfide in Aqueous Buffer and in Cells. Zijuan Hai, Yajie Bao, Qingqing Miao, Xiaoyi Yi, and Gaolin Liang. Anal. Chem.: February 12, 2015
  • Design of Lead Telluride Based Thermoelectric Materials through Incorporation of Lead Sulfide Inclusions or Ligand Stripping of Nano-Sized Building Blocks. Derak James, Xu Lu, Alexander Chi Nguyen, Donald T. Morelli, and Stephanie L. Brock. J. Phys. Chem. C: February 11, 2015
  • Reduction of Nitroaromatics Sorbed to Black Carbon by Direct Reaction with Sorbed Sulfides. Wenqing Xu, Joseph J. Pignatello, and William Armistead Mitch. Environ. Sci. Technol.: February 11, 2015
  • Classification of Zinc Sulfide Quantum Dots by Size: Insights into the Particle Surface–Solvent Interaction of Colloids. Doris Segets, Christian Lutz, Kyoko Yamamoto, So Komada, Sebastian Süß, Yasushige Mori, and Wolfgang Peukert. J. Phys. Chem. C: January 29, 2015
  • Double Metal Ions Synergistic Effect in Hierarchical Multiple Sulfide Microflowers for Enhanced Supercapacitor Performance. Yang Gao, Liwei Mi, Wutao Wei, Shizhong Cui, Zhi Zheng, Hongwei Hou, and Weihua Chen. ACS Appl. Mater. Interfaces: January 27, 2015
  • Reductive Transformation of Tetrachloroethene Catalyzed by Sulfide–Cobalamin in Nano-Mackinawite Suspension. Daeseung Kyung, Amnorzahira Amir, Kyunghoon Choi, and Woojin Lee. Ind. Eng. Chem. Res.: January 26, 2015
  • Molecularly Engineered Quantum Dots for Visualization of Hydrogen Sulfide. Yehan Yan, Huan Yu, Yajiao Zhang, Kui Zhang, Houjuan Zhu, Tao Yu, Hui Jiang, and Suhua Wang. ACS Appl. Mater. Interfaces: January 23, 2015
  • Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects. Shunhao Wang, Andreas Riedinger, Hongbo Li, Changhui Fu, Huiyu Liu, Linlin Li, Tianlong Liu, Longfei Tan, Markus J. Barthel, Giammarino Pugliese, Francesco De Donato, Marco Scotto D’Abbusco, Xianwei Meng, Liberato Manna, Huan Meng, and Teresa Pellegrino. ACS Nano: January 20, 2015
  • Photoinduced Carrier Dynamics of Nearly Stoichiometric Oleylamine-Protected Copper Indium Sulfide Nanoparticles and Nanodisks. Masanori Sakamoto, Lihui Chen, Makoto Okano, David M. Tex, Yoshihiko Kanemitsu, and Toshiharu Teranishi. J. Phys. Chem. C: January 19, 2015