Skip to Page Content

Aluminum Sulfide

High Purity Al2S3
CAS 1302-81-4


Product Product Code Request Quote
(5N) 99.999% Aluminum Sulfide Powder AL-S-05-P Request Quote
(5N) 99.999% Aluminum Sulfide Ingot AL-S-05-I Request Quote
(5N) 99.999% Aluminum Sulfide Chunk AL-S-05-CK Request Quote
(5N) 99.999% Aluminum Sulfide Lump AL-S-05-L Request Quote
(5N) 99.999% Aluminum Sulfide Sputtering Target AL-S-05-ST Request Quote
(5N) 99.999% Aluminum Sulfide Wafer AL-S-05-WSX Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Al2S3 1302-81-4 24860110 159369 MFCD00014162 215-109-0 dialuminum trisulfide N/A [Al+3].[Al+3].[S-2].[S-2].[S-2] InChI=1S/2Al.3S/q2*+3;3*-2 COOGPNLGKIHLSK-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density Exact Mass Monoisotopic Mass Charge MSDS
Al2S3 150.16 gray solid 1,100° C
(2,012° F)
1,500° C
(2,732° F)
2.32 g/cm3 149.879289 149.879288 Da 0 Safety Data Sheet

Sulfide IonAluminum Sulfide is a moderately water and acid soluble Aluminum source for uses compatible with sulfates. Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles () and deposited utilizing sputtering targets and evaporation materials for uses such as solar energy materials and fuel cells. Aluminum Sulfide is generally immediately available in most volumes. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale elemental powders and suspensions, as alternative high surface area forms, may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Aluminum (Al) atomic and molecular weight, atomic number and elemental symbolAluminum, also known as Aluminium, (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element.Aluminum Bohr ModelAluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. It wasn't until 1825 that Aluminum was first isolated by Hans Christian Oersted. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental Aluminum Although it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements it imparts a variety of useful properties. Aluminum was first predicted by Antoine Lavoisierin 1787 and first isolated by Friedrich Wöhler in 1827. For more information on aluminum, including properties, safety data, research, and American Elements' catalog of aluminum products, visit the Aluminum element page.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

ALUMINUM SULFIDE SYNONYMS
Aluminum sulfide (Al2S3), dialuminum sulfur(-2) dihydride anion, sulfanylidene-sulfanylidenealumanylsulfanyl-alumane, Dialuminium trisulphide, thioxo-(thioxoalumanylthio)alumane, sulfanylidene-sulfanylidenealumanylsulfanylalumane, aluminum sulfide (2:3), aluminum sesquisulfide

CUSTOMERS FOR ALUMINUM SULFIDE HAVE ALSO LOOKED AT
Aluminum Wire Aluminum Copper Silicon Metal Aluminum Oxide Pellets Aluminum Metal Aluminum Acetate
Aluminum Foil Aluminum Acetylacetonate Aluminum Pellets Aluminum Vanadium Alloy Aluminum Chloride
Aluminum Nanoparticles Aluminum Powder Aluminum Sputtering Target Aluminum Nitrate Aluminum Oxide
Show Me MORE Forms of Aluminum

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Aluminum

  • Coagulation behavior and floc properties of compound bioflocculant-polyaluminum chloride dual-coagulants and polymeric aluminum in low temperature surface water treatment. Huang X, Sun S, Gao B, Yue Q, Wang Y, Li Q. J Environ Sci (China). 2015 Apr 1: J Environ Sci (China)
  • Tannoid principles of Emblica officinalis renovate cognitive deficits and attenuate amyloid pathologies against aluminum chloride induced rat model of Alzheimer's disease. Justin Thenmozhi A, Dhivyabharathi M, William Raja TR, Manivasagam T, Mohamed Essa M. Nutr Neurosci. 2015 Apr 4. : Nutr Neurosci
  • Vertically-aligned carbon nanotubes on aluminum as a light-weight positive electrode for lithium-polysulfide batteries. Liatard S, Benhamouda K, Fournier A, Ramos R, Barchasz C, Dijon J. Chem Commun (Camb). 2015 Apr 8. : Chem Commun (Camb)
  • Treatment of Melasma in Men With Low-Fluence Q-Switched Neodymium-Doped Yttrium-Aluminum-Garnet Laser Versus Combined Laser and Glycolic Acid Peeling. Vachiramon V, Sahawatwong S, Sirithanabadeekul P. Dermatol Surg. 2015 Mar 9.
  • Cytotoxic and genotoxic characterization of aluminum and silicon oxide nanoparticles in macrophages. Hashimoto M, Imazato S. Dent Mater. 2015 Mar 5.
  • Hybrid Structures of Polycationic aluminum phthalocyanines and quantum dots. Maksimov EG, Gvozdev DA, Strakhovskaya MG, Paschenko VZ. Biochemistry (Mosc). 2015 Mar
  • Chitosan-aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound. Phaechamud T, Yodkhum K, Charoenteeraboon J, Tabata Y. Mater Sci Eng C Mater Biol Appl. 2015 May
  • The Metal-Organic Framework MIL-53(Al) Constructed from Multiple Metal Sources: Alumina, Aluminum Hydroxide, and Boehmite. Li Z, Wu YN, Li J, Zhang Y, Zou X, Li F. Chemistry. 2015 Mar 10.
  • ZnO-based thin film transistors employing aluminum titanate gate dielectrics deposited by spray pyrolysis at ambient air. Afouxenidis D, Mazzocco R, Vourlias G, Livesley PJ, Krier A, Milne WI, Kolosov OV, Adamopoulos G. ACS Appl Mater Interfaces. 2015 Mar 16.
  • The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition. Wang ZY, Zhang RJ, Lu HL, Chen X, Sun Y, Zhang Y, Wei YF, Xu JP, Wang SY, Zheng YX, Chen LY. Nanoscale Res Lett. 2015 Feb 6: Nanoscale Res Lett

Recent Research & Development for Sulfides

  • Enhanced field emission from in situ synthesized 2D copper sulfide nanoflakes at low temperature by using a novel controllable solvothermal preferred edge growth route. Song Z, Lei H, Li B, Wang H, Wen J, Li S, Fang G. Phys Chem Chem Phys. 2015 Apr 14. : Phys Chem Chem Phys
  • [Influence of hydrogen sulfide on the intestinal biological barrier of rats with severe burn injury]. Li Y, Wang H, Wu X, Wang L. Zhonghua Shao Shang Za Zhi. 2015 Feb: Zhonghua Shao Shang Za Zhi
  • Deciphering the Pathogenesis of NSAID-Enteropathy Using Proton Pump Inhibitors and a Hydrogen Sulfide-Releasing NSAID. Blackler RW, De Palma G, Manko A, Da Silva GJ, Flannigan KL, Bercik P, Surette MG, Buret AG, Wallace JL. Am J Physiol Gastrointest Liver Physiol. 2015 Apr 16: Am J Physiol Gastrointest Liver Physiol
  • A comparison between determination of trace amounts of sulfide in the presence and absence of micelle particles in natural waters (Qazvin, Iran): a kinetic spectrophotometric approach. Alizadeh N, Mahjoub M. Environ Monit Assess. 2015 May: Environ Monit Assess
  • Involvement of Reactive Persulfides in Biological Bismethylmercury Sulfide Formation. Abiko Y, Yoshida E, Ishii I, Fukuto JM, Akaike T, Kumagai Y. Chem Res Toxicol. 2015 Apr 15. : Chem Res Toxicol
  • Preparation of efficient cadmium sulfide nanofibers for hydrogen production using ethylenediamine (NH2CH2CH2NH2) as template. Hernández-Gordillo A, Oros-Ruiz S, Gómez R. J Colloid Interface Sci. 2015 Apr 3: J Colloid Interface Sci
  • [Investigation of stages of chemical leaching and biooxidation during the extraction of gold from sulfide concentrates]. [No authors listed]. Prikl Biokhim Mikrobiol. 2015 Jan-Feb: Prikl Biokhim Mikrobiol
  • Facile assembly of oppositely charged silver sulfide nanoparticles into photoluminescent mesoporous nanospheres. Tan L, Liu S, Yang Q, Shen YM. Langmuir. 2015 Mar 15.
  • Cadmium sulfide quantum dots induce oxydative-stress and behavioural impairments in the marine clam Scrobicularia plana. Buffet PE, Zalouk-Vergnoux A, Poirier L, Lopes C, Risso-de Faverney C, Guibbolini M, Gilliland D, Perrein-Ettajani H, Valsami-Jones E, Mouneyrac C. Environ Toxicol Chem. 2015 Mar 13.
  • Hexametaphosphate-Capped Silica Mesoporous Nanoparticles Containing CuII Complexes for the Selective and Sensitive Optical Detection of Hydrogen Sulfide in Water. El Sayed S, Milani M, Licchelli M, Martínez-Máñez R, Sancenón F. Chemistry. 2015 Mar 10.