Skip to Page Content

Arsenic Phosphide

High Purity AsP3
CAS 12511-95-4


Product Product Code Request Quote
(5N) 99.999% Arsenic Phosphide Powder AS-P-05-P Request Quote
(5N) 99.999% Arsenic Phosphide Ingot AS-P-05-I Request Quote
(5N) 99.999% Arsenic Phosphide Chunk AS-P-05-CK Request Quote
(5N) 99.999% Arsenic Phosphide Lump AS-P-05-L Request Quote
(5N) 99.999% Arsenic Phosphide Sputtering Target AS-P-05-ST Request Quote
(5N) 99.999% Arsenic Phosphide Wafer AS-P-05-WSX Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
AsP3 12511-95-4 104395113 139321 N/A N/A N/A N/A [As]12P3P1P23 InChI=1S/AsP3/c1-2-3(1)4(1)2 FSYBALXZIPUFSR-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density Exact Mass Monoisotopic Mass Charge MSDS
AsP3 167.84 N/A N/A 167.842881 167.842881 0 Safety Data Sheet

Phosphide IonArsenic Phosphide is a semiconductor used in high power, high frequency applications and in laser diodes. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Arsenic Bohr ModelArsenic (As) atomic and molecular weight, atomic number and elemental symbolArsenic (atomic symbol: As, atomic number: 33) is a Block P, Group 15, Period 4 element with an atomic radius of 74.92160. The number of electrons in each of arsenic's shells is 2, 8, 18, 5 and its electron configuration is [Ar] 3d10 4s2 4p3. The arsenic atom has a radius of 119 pm and a Van der Waals radius of 185 pm. Arsenic was discovered in the early Bronze Age, circa 2500 BC. It was first isolated by Albertus Magnus in 1250 AD. In its elemental form, arsenic is a metallic grey, brittle, crystalline, semimetallic solid.Elemental Arsenic Arsenic is found in numerous minerals including arsenolite (As2O3), arsenopyrite (FeAsS), loellingite (FeAs2), orpiment (As2S3), and realgar (As4S4). Arsenic has numerous applications as a semiconductor and other electronic applications as indium arsenide, silicon arsenide and tin arsenide. Arsenic is finding increasing uses as a doping agent in solid-state devices such as transistors. For more information on arsenic, including properties, safety data, research, and American Elements' catalog of arsenic products, visit the Arsenic element page.

Phosphorus(P) atomic and molecular weight, atomic number and elemental symbolPhosphorus Bohr ModelPhosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus; its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669; its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation. For more information on phosphorus, including properties, safety data, research, and American Elements' catalog of phosphorus products, visit the Phosphorus element page.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

ARSENIC PHOSPHIDE SYNONYMS
Arsenic triphosphide, 1,2,3-Triphospha-4-arsatricyclo[1.1.0.02,4]butane

CUSTOMERS FOR ARSENIC PHOSPHIDE HAVE ALSO LOOKED AT
Arsenic Sputtering Target Arsenic Bar Arsenic Acetate Arsenic Telluride Arsenic Phosphide
Arsenic Oxide Pellets Arsenic Foil Arsenic Metal Tin Arsenide Barium Arsenate
Arsenic Sheets Arsenic Metal Arsenic Pellets Arsenic Sheets Arsenic Microfoil
Show Me MORE Forms of Arsenic

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Arsenic

  • Sulfur Derivatives of the Natural Polyarsenical Arsenicin A: Biologically Active, Organometallic Arsenic–Sulfur Cages Related to the Minerals Realgar and Uzonite. Di Lu, Sundaram Arulmozhiraja, Michelle L. Coote, A. David Rae, Geoff Salem, Anthony C. Willis, and S. Bruce Wild , Shirine Benhenda, Valerie Lallemand Breitenbach, and Hugues de Thé , Xiaoyi Zhai, Philip J. Hogg, and Pierre J. Dilda. Organometallics: February 11, 2015
  • Oxidation of Iron Causes Removal of Phosphorus and Arsenic from Streamwater in Groundwater-Fed Lowland Catchments. Stijn Baken, Peter Salaets, Nele Desmet, Piet Seuntjens, Elin Vanlierde, and Erik Smolders. Environ. Sci. Technol.: February 6, 2015
  • Hybrid Flow System for Automatic Dynamic Fractionation and Speciation of Inorganic Arsenic in Environmental Solids. Yanlin Zhang, Manuel Miró, and Spas D Kolev. Environ. Sci. Technol.: February 3, 2015
  • Arsenic Biotransformation in Solid Waste Residue: Comparison of Contributions from Bacteria with Arsenate and Iron Reducing Pathways. Haixia Tian, Qiantao Shi, and Chuanyong Jing. Environ. Sci. Technol.: January 21, 2015
  • Multivalency in the Inhibition of Oxidative Protein Folding by Arsenic(III) Species. Aparna Sapra, Danny Ramadan, and Colin Thorpe. Biochemistry: December 15, 2014
  • Visible-Light Induced Photocatalytic Activity of Electrospun-TiO2 in Arsenic(III) Oxidation. Gong Zhang, Meng Sun, Yang Liu, Xiufeng Lang, Limin Liu, Huijuan Liu, Jiuhui Qu, and Jinghong Li. ACS Appl. Mater. Interfaces: December 10, 2014
  • Removal of Trace Arsenic Based on Biomimetic Separation. Bo Sun, Hao Zhai, Li-Bing Zhang, Chun-Xue Zhang, and Xin-Shi Wu. Ind. Eng. Chem. Res.: December 10, 2014
  • High Infrared Photoconductivity in Films of Arsenic-Sulfide-Encapsulated Lead-Sulfide Nanocrystals. Sergii Yakunin, Dmitry N. Dirin, Loredana Protesescu, Mykhailo Sytnyk, Sajjad Tollabimazraehno, Markus Humer, Florian Hackl, Thomas Fromherz, Maryna I. Bodnarchuk, Maksym V. Kovalenko, and Wolfgang Heiss. ACS Nano: December 3, 2014
  • Arsenic(III) and Arsenic(V) Speciation during Transformation of Lepidocrocite to Magnetite. Yuheng Wang, Guillaume Morin, Georges Ona-Nguema, and Gordon E. Brown, Jr.. Environ. Sci. Technol.: November 26, 2014
  • Arsenic Speciation in Edible Mushrooms. Michelle M. Nearing, Iris Koch, and Kenneth J. Reimer. Environ. Sci. Technol.: November 22, 2014