Gold Pellets

High Purity Au Pellets
CAS 7440-57-5


Product Product Code Order or Specifications
(2N) 99% Gold Pellets AU-M-02-PE Contact American Elements
(3N) 99.9% Gold Pellets AU-M-03-PE Contact American Elements
(4N) 99.99% Gold Pellets AU-M-04-PE Contact American Elements
(5N) 99.999% Gold Pellets AU-M-05-PE Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Au 7440-57-5 24882773 23985 MFCD00003436 231-165-9 N/A [Au] InChI=1S/Au PCHJSUWPFVWCPO-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
196.97 Yellow 19.3 gm/cc N/A 1064.43°C 3080°C 3.18 W/cm/K @ 298.2 K 2.214 microhm-cm @ 20°C 2.4 Paulings 0.308 Cal/g/K @ 25°C 81.8 K-Cal/gm atom at 3080°C 3.03 Cal/gm mole Safety Data Sheet

American Elements specializes in producing high purity uniform shaped Gold Pellets with the highest possible density High Purity Pelletsand smallest possible average grain sizes for use in semiconductor, Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). Our standard Pellet sizes range from 1/8" x 1/8" to 1/4" x 1/4" and 3 mm diameter. We can also provide Pellets outside this range for ultra high purity thin film applications, such as fuel cells and solar energy layers. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and in the form of solutions and organometallics. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. See safety data and research below and pricing/lead time above. We also produce Gold as rod, ingot, powder, pieces, disc, granules, wire, and in compound forms, such as oxide. Other shapes are available by request.

Gold (Au) atomic and molecular weight, atomic number and elemental symbol Gold (atomic symbol: Au, atomic number: 79) is a Block D, Group 11, Period 6 element with an atomic weight of 196.966569. The number of electrons in each of Gold's shells is 2, 8, 18, 32, 18, 1 and its electron configuration is [Xe] 4f142 5d10 6s1. Gold Bohr ModelThe gold atom has a radius of 144 pm and a Van der Waals radius of 217 pm. Gold was first discovered by Early Man prior to 6000 B.C. In its elemental form, gold has a metallic yellow appearance. Elemental Gold Gold is a soft metal and is usually alloyed to give it more strength. It is a good conductor of heat and electricity, and is unaffected by air and most reagents. It is one of the least reactive chemical elements. Gold is often found as a free element and with silver as a gold silver alloy. Less commonly, it is found in minerals as gold compounds, usually with tellurium. For more information on gold, including properties, safety data, research, and American Elements' catalog of gold products, visit the Gold Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
N/A
N/A
N/A
N/A
N/A
N/A
N/A
nwg
N/A        

CUSTOMERS FOR GOLD PELLETS HAVE ALSO LOOKED AT
Gold Powder Gold Nanoparticles Gold Metal Gold Sheet Gold Nitrate
Gold Acetate Tin Gold Alloy Gold Foil Gold Chloride Copper Gold Nickel Alloy
Gold Sputtering Target Gold Oxide Pellets
Gold Pellets
Gold Fluoride Gold Bar
Show Me MORE Forms of Gold

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Gold

  • Raju Poddar, Maddipatla Reddikumar, In vitro 3D anterior segment imaging in lamb eye with extended depth range swept source optical coherence tomography, Optics & Laser Technology, Volume 67, April 2015
  • Arash Ahmadivand, Saeed Golmohammadi, Surface plasmon resonances and plasmon hybridization in compositional Al/Al2O3/SiO2 nanorings at the UV spectrum to the near infrared region (NIR), Optics & Laser Technology, Volume 66, March 2015
  • G.F. Sun, K. Wang, R. Zhou, Z.P. Tong, X.Y. Fang, Effect of annealing on microstructure and mechanical properties of laser deposited Co-285+WC coatings, Optics & Laser Technology, Volume 66, March 2015
  • Xin Jiang, Soni Chandrasekar, Changhai Wang, A laser microwelding method for assembly of polymer based microfluidic devices, Optics and Lasers in Engineering, Volume 66, March 2015
  • Giulio Martini, Elisa Martinelli, Giacomo Ruggeri, Giancarlo Galli, Andrea Pucci, Julolidine fluorescent molecular rotors as vapour sensing probes in polystyrene films, Dyes and Pigments, Volume 113, February 2015
  • M.A. Pogosova, D.I. Provotorov, A.A. Eliseev, M. Jansen, P.E. Kazin, Synthesis and characterization of the Bi-for-Ca substituted copper-based apatite pigments, Dyes and Pigments, Volume 113, February 2015
  • Simon Kuster, Thomas Geiger, Coupled π-conjugated chromophores: Squaraine dye dimers as two connected pendulums, Dyes and Pigments, Volume 113, February 2015
  • Zhenghuan Lin, Yingshuang Ma, Xin Zheng, Limei Huang, E Yang, Cheng-Ya Wu, Tahsin J. Chow, Qidan Ling, Amide-based diarylmaleimide derivatives and polymers: Highly selective and ratiometric fluorescence sensing for anions, Dyes and Pigments, Volume 113, February 2015
  • Qun Wang, Ji Qi, Wenqiang Qiao, Zhi Yuan Wang, Soluble ladder conjugated polypyrrones: Synthesis, characterization and application in photodetectors, Dyes and Pigments, Volume 113, February 2015
  • Lufei Xiao, Hui Wang, Qiong Zhang, Yingzhong Zhu, Junshan Luo, Yunke Liang, Shengyi Zhang, Hongping Zhou, Yupeng Tian, Jieying Wu, Novel ruthenium (II) polypyridyl complexes containing carbazole with flexible substituents: Crystal structure, nonlinear optical properties and DNA-binding interaction, Dyes and Pigments, Volume 113, February 2015