Gold(I) Potassium Cyanide

KAu(CN)2
CAS 13967-50-5


Product Product Code Order or Specifications
(2N) 99% Gold(I) Potassium Cyanide AU1-KCY-02 Contact American Elements
(2N5) 99.5% Gold(I) Potassium Cyanide AU1-KCY-025 Contact American Elements
(3N) 99.9% Gold(I) Potassium Cyanide AU1-KCY-03 Contact American Elements
(3N5) 99.95% Gold(I) Potassium Cyanide AU1-KCY-035 Contact American Elements
(4N) 99.99% Gold(I) Potassium Cyanide AU1-KCY-04 Contact American Elements
(5N) 99.999% Gold(I) Potassium Cyanide AU1-KCY-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
KAu(CN)2 13967-50-5 46234910 159710 MFCD00011414 237-748-4 potassium; gold(3+); tetrathiocyanate 6235525 [Au+].[K+].[C-]#N.[C-]#N InChI=1S/2CN.Au.K
/c2*1-2;;/q2*-1;2*+1
XTFKWYDMKGAZKK-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
C2AuKN2 288.10 white powder or crystals N/A N/A 3.45 g/cm3 287.936423 287.936423 0 Safety Data Sheet

Gold(I) Potassium Cyanide (Potassium Gold Cyanide) is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Gold (Au) atomic and molecular weight, atomic number and elemental symbol Gold (atomic symbol: Au, atomic number: 79) is a Block D, Group 11, Period 6 element with an atomic weight of 196.966569. The number of electrons in each of Gold's shells is 2, 8, 18, 32, 18, 1 and its electron configuration is [Xe] 4f142 5d10 6s1. Gold Bohr ModelThe gold atom has a radius of 144 pm and a Van der Waals radius of 217 pm. Gold was first discovered by Early Man prior to 6000 B.C. In its elemental form, gold has a metallic yellow appearance. Elemental Gold Gold is a soft metal and is usually alloyed to give it more strength. It is a good conductor of heat and electricity, and is unaffected by air and most reagents. It is one of the least reactive chemical elements. Gold is often found as a free element and with silver as a gold silver alloy. Less commonly, it is found in minerals as gold compounds, usually with tellurium. For more information on gold, including properties, safety data, research, and American Elements' catalog of gold products, visit the Gold Information Center.

Potassium (K) atomic and molecular weight, atomic number and elemental symbol Elemental PotassiumPotassium (atomic symbol: K, atomic number: 19) is a Block S, Group 1, Period 4 element with an atomic weight of 39.0983. The number of electrons in each of Potassium's shells is [2, 8, 8, 1] and its electron configuration is [Ar] 4s1. The potassium atom has a radius of 227.2 pm and a Van der Waals radius of 275 pm. Potassium was discovered and first isolated by Sir Humphrey Davy in 1807. Potassium is the seventh most abundant element on earth. It is one of the most reactive and electropositive of all metals and rapidly oxidizes. Potassium Bohr ModelAs with other alkali metals, potassium decomposes in water with the evolution of hydrogen; because of its reacts violently with water, it only occurs in nature in ionic salts. In its elemental form, potassium has a silvery gray metallic appearance, but its compounds (such as potassium hydroxide) are more frequently used in industrial and chemical applications. The origin of the element's name comes from the English word 'potash,' meaning pot ashes, and the Arabic word 'qali,' which means alkali. The symbol K originates from the Latin word 'kalium'. For more information on potassium, including properties, safety data, research, and American Elements' catalog of potassium products, visit the Potassium Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Danger
Hazard Statements H300-H310-H330-H410
Hazard Codes T+,N
Risk Codes 26/27/28-32-50/53
Safety Precautions 7-28-29-45-60-61
RTECS Number N/A
Transport Information UN 1588 6.1/PG 1
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Skull and Crossbones-Acute Toxicity  Environment-Hazardous to the aquatic environment      

GOLD(I) POTASSIUM CYANIDE SYNONYMS
Potassium dicyanoaurate(I); Potassium gold cyanide; Gold(1+) potassium cyanide (1:1:2); Aurate(1-), bis(cyano-C)-, potassium; monopotassium dicyanoaurate; potassium dicyanaurate; potassium dicyanidoaurate(I), GPC

CUSTOMERS FOR GOLD(I) POTASSIUM CYANIDE HAVE ALSO LOOKED AT
Gold Powder Gold Nanoparticles Gold Metal Gold Sheet Gold Nitrate
Gold Acetate Tin Gold Alloy Gold Foil Gold Chloride Copper Gold Nickel Alloy
Gold Sputtering Target Gold Oxide Pellets
Gold Pellets
Gold Fluoride Gold Bar
Show Me MORE Forms of Gold

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Gold

  • Raju Poddar, Maddipatla Reddikumar, In vitro 3D anterior segment imaging in lamb eye with extended depth range swept source optical coherence tomography, Optics & Laser Technology, Volume 67, April 2015
  • Arash Ahmadivand, Saeed Golmohammadi, Surface plasmon resonances and plasmon hybridization in compositional Al/Al2O3/SiO2 nanorings at the UV spectrum to the near infrared region (NIR), Optics & Laser Technology, Volume 66, March 2015
  • G.F. Sun, K. Wang, R. Zhou, Z.P. Tong, X.Y. Fang, Effect of annealing on microstructure and mechanical properties of laser deposited Co-285+WC coatings, Optics & Laser Technology, Volume 66, March 2015
  • Xin Jiang, Soni Chandrasekar, Changhai Wang, A laser microwelding method for assembly of polymer based microfluidic devices, Optics and Lasers in Engineering, Volume 66, March 2015
  • Giulio Martini, Elisa Martinelli, Giacomo Ruggeri, Giancarlo Galli, Andrea Pucci, Julolidine fluorescent molecular rotors as vapour sensing probes in polystyrene films, Dyes and Pigments, Volume 113, February 2015
  • M.A. Pogosova, D.I. Provotorov, A.A. Eliseev, M. Jansen, P.E. Kazin, Synthesis and characterization of the Bi-for-Ca substituted copper-based apatite pigments, Dyes and Pigments, Volume 113, February 2015
  • Simon Kuster, Thomas Geiger, Coupled π-conjugated chromophores: Squaraine dye dimers as two connected pendulums, Dyes and Pigments, Volume 113, February 2015
  • Zhenghuan Lin, Yingshuang Ma, Xin Zheng, Limei Huang, E Yang, Cheng-Ya Wu, Tahsin J. Chow, Qidan Ling, Amide-based diarylmaleimide derivatives and polymers: Highly selective and ratiometric fluorescence sensing for anions, Dyes and Pigments, Volume 113, February 2015
  • Qun Wang, Ji Qi, Wenqiang Qiao, Zhi Yuan Wang, Soluble ladder conjugated polypyrrones: Synthesis, characterization and application in photodetectors, Dyes and Pigments, Volume 113, February 2015
  • Lufei Xiao, Hui Wang, Qiong Zhang, Yingzhong Zhu, Junshan Luo, Yunke Liang, Shengyi Zhang, Hongping Zhou, Yupeng Tian, Jieying Wu, Novel ruthenium (II) polypyridyl complexes containing carbazole with flexible substituents: Crystal structure, nonlinear optical properties and DNA-binding interaction, Dyes and Pigments, Volume 113, February 2015

Recent Research & Development for Potassium

  • Dragoslav Ilić, Verica V. Jevtić, Miorad M. Vasojević, Miodrag Ž. Jelić, Ivana D. Radojević, Ljiljana R. Čomić, Slađana B. Novaković, Goran A. Bogdanović, Ivan Potočňák, Srećko R. Trifunović, Stereospecific ligands and their complexes. Part XXI. Synthesis, characterization, circular dichroism and antimicrobial activity of cobalt(III) complexes with some edda-type of ligands. Crystal structure of potassium-Δ-(−)589-s-cis-oxalato-(S,S)-ethylenediamine-N,N′-di-(2-propanoato)-cobaltate(III)-semihydrate, K-Δ-(−)589-s-cis-[Co(S,S-eddp)(ox)]·0.5H2O, Polyhedron, Volume 85, 8 January 2015
  • T. Palacios, J. Reiser, J. Hoffmann, M. Rieth, A. Hoffmann, J.Y. Pastor, Microstructural and mechanical characterization of annealed tungsten (W) and potassium-doped tungsten foils, International Journal of Refractory Metals and Hard Materials, Volume 48, January 2015
  • Prasanna Padigi, Gary Goncher, David Evans, Raj Solanki, Potassium barium hexacyanoferrate – A potential cathode material for rechargeable calcium ion batteries, Journal of Power Sources, Volume 273, 1 January 2015
  • V.G. Goffman, A.V. Gorokhovsky, M.M. Kompan, E.V. Tretyachenko, O.S. Telegina, A.V. Kovnev, F.S. Fedorov, Electrical properties of the potassium polytitanate compacts, Journal of Alloys and Compounds, Volume 615, Supplement 1, 5 December 2014
  • Jorge Omar Gil Posada, Peter J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, Journal of Power Sources, Volume 268, 5 December 2014
  • Renan Azevedo da Rocha, Carolina Leão Quintanilha, Thayná Viana Lanxin, Júlio Carlos Afonso, Cláudio Augusto Vianna, Valdir Gante, José Luiz Mantovano, Production of potassium manganate and barium manganate from spent zinc–MnO2 dry cells via fusion with potassium hydroxide, Journal of Power Sources, Volume 268, 5 December 2014
  • Kaiyou Zhang, Hong Chen, Xue Wang, Donglin Guo, Chenguo Hu, Shuxia Wang, Junliang Sun, Qiang Leng, Synthesis and structure determination of potassium copper selenide nanowires and solid-state supercapacitor application, Journal of Power Sources, Volume 268, 5 December 2014
  • Elena Yazhenskikh, Tatjana Jantzen, Klaus Hack, Michael Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags: Potassium oxide–magnesium oxide–silica, Calphad, Volume 47, December 2014
  • Nicolay Yu. Adonin, Anton Yu. Shabalin, Vadim V. Bardin, Hydrodeboration of potassium polyfluoroaryl(fluoro)borates with alcohols, Journal of Fluorine Chemistry, Volume 168, December 2014
  • C. Balbuena, M.A. Frechero, R.A. Montani, Channel diffusion in a lithium–potassium metasilicate glass using the isoconfigurational ensemble: Towards a scenario for the mixed alkali effect, Journal of Non-Crystalline Solids, Volume 405, 1 December 2014