Barium Circle

High Purity Ba Metal Circles
CAS 7440-39-3

Product Product Code Order or Specifications
(2N) 99% Barium Circle BA-M-02-CRCL Contact American Elements
(3N) 99.9% Barium Circle BA-M-03-CRCL Contact American Elements
(4N) 99.99% Barium Circle BA-M-04-CRCL Contact American Elements
(5N) 99.999% Barium Circle BA-M-05-CRCL Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
Ba 7440-39-3 24881555 5355457 MFCD00134031 231-149-1 N/A [Ba] InChI=1S/Ba DSAJWYNOEDNPEQ-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
137.33 Yellowish-White 3.5 gm/cc N/A 725 °C 1640 °C 20.184 W/cm/K @ 298.2 K N/A 0.9 Paulings 0.046 Cal/g/K @ 25 °C 35.7 K-cal/gm atom at 1640 °C 1.83 Cal/gm mole Safety Data Sheet

American Elements specializes in producing high purity Barium Circles with the highest possible densityHigh Purity (99.99%) Metallic Circleand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard Circle sizes range from 1" to 8" in diameter and from 2mm to 1/2" thick. We can also provide Circles outside this range. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and in the form of solutions and organometallics. See safety data and research below and pricing/lead time above. We also produce Barium as rod, pellets, powder, pieces, granules, ingot, wire, and in compound forms, such as oxide. Other shapes are available by request.

Barium (Ba) and molecular weight, atomic number and elemental symbolBarium (atomic symbol: Ba, atomic number: 56) is a Block S, Group 2, Period 6 element with an atomic weight of 137.27. The number of electrons in each of barium's shells is [2, 8, 18, 18, 8, 2] and its electron configuration is [Xe] 6s2. Barium Bohr ModelBarium is a member of the alkaline-earth metals. The barium atom has a radius of 222 pm and a Van der Waals radius of 268 pm. Barium was discovered by Carl Wilhelm Scheele in 1772 and first isolated by Humphry Davy in 1808. Elemental Barium In its elemental form, barium is a soft, silvery-gray metal. Industrial applications for barium include acting as a "getterer," or unwanted gas remover, for vacuum tubes, and as an additive to steel and cast iron. Barium is also alloyed with silicon and aluminum as load-bearing alloys. The main commercial source of barium is the mineral barite (BaSO4); it does not occur naturally as a free element . The name barium is derived from the Greek word "barys," meaning heavy. For more information on barium, including properties, safety data, research, and American Elements' catalog of barium products, visit the Barium Information Center.

UN 1400 4.3/PG 2
Exclamation Mark-Acute Toxicity Flame-Flammables      

Show Me MORE Forms of Barium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Barium

  • Adrian Bele, Maria Cazacu, George Stiubianu, Stelian Vlad, Mircea Ignat, Polydimethylsiloxane–barium titanate composites: Preparation and evaluation of the morphology, moisture, thermal, mechanical and dielectric behavior, Composites Part B: Engineering, Volume 68, January 2015
  • Leliang Li, Jun Zheng, Yuhua Zuo, Buwen Cheng, Qiming Wang, Efficient 1.54-μm emission through Eu2+ sensitization of Er3+ in thin films of Eu2+/Er3+ codoped barium strontium silicate under broad ultraviolet light excitation, Journal of Luminescence, Volume 157, January 2015
  • Prasanna Padigi, Gary Goncher, David Evans, Raj Solanki, Potassium barium hexacyanoferrate – A potential cathode material for rechargeable calcium ion batteries, Journal of Power Sources, Volume 273, 1 January 2015
  • Agata Bialy, Peter B. Jensen, Didier Blanchard, Tejs Vegge, Ulrich J. Quaade, Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity, Journal of Solid State Chemistry, Volume 221, January 2015
  • Poonam Pahuja, R.K. Kotnala, R.P. Tandon, Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Pengrong Ren, Huiqing Fan, Xin Wang, Dong Guangzhi, Phase transition, high figure of merit and polar nano-regions in dielectric tunable lanthanum substituted barium titanate, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Xuebin Qiao, Yu Cheng, Lin Qin, Chuanxiang Qin, Peiqing Cai, Sun Il Kim, Hyo Jin Seo, Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Jen-Hsien Hsu, Cheol-Woon Kim, Richard K. Brow, Joe Szabo, Ray Crouch, Rob Baird, An alkali-free barium borosilicate viscous sealing glass for solid oxide fuel cells, Journal of Power Sources, Volume 270, 15 December 2014
  • Gan Jet Hong Melvin, Qing-Qing Ni, Toshiaki Natsuki, Electromagnetic wave absorption properties of barium titanate/carbon nanotube hybrid nanocomposites, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Junhai Shen, Keyu Chen, Liangchao Li, Weixiang Wang, Ye Jin, Fabrication and microwave absorbing properties of (Z-type barium ferrite/silica)@polypyrrole composites, Journal of Alloys and Compounds, Volume 615, 5 December 2014