Barium Sulfate Solution

AE Solutions™
CAS 7727-43-7

Product Product Code Order or Specifications
(2N) 99% Barium Sulfate Solution BA-SAT-02-SOL Contact American Elements
(3N) 99.9% Barium Sulfate Solution BA-SAT-03-SOL Contact American Elements
(4N) 99.99% Barium Sulfate Solution BA-SAT-04-SOL Contact American Elements
(5N) 99.999% Barium Sulfate Solution BA-SAT-05-SOL Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
BaSO4 7727-43-7 24852116 24414 MFCD00003455 231-784-4 barium(2+) sulfate N/A [Ba+2].[O-]S([O-])(=O)=O InChI=1S/Ba.H2O4S/c;1-5(2,3)4/h;(H2,1,2,3,4)/q+2;/p-2 TZCXTZWJZNENPQ-UHFFFAOYSA-L

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
BaO4S 233.39 White 1,345° C
(2,453° F)
1,600° C
(2,912° F)
4.50 g/cm3 233.857 233.857 0 Safety Data Sheet

Sulfate IonBarium Sulfate Solutions are moderate to highly concentrated liquid solutions of Barium Sulfate. They are an excellent source of Barium Sulfate for applications requiring solubilzed Compound Solutions Packaging, Bulk Quantity materials. American Elements can prepare dissolved homogenous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers. American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research and in optic, laser, crystal and glass applications. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale (See also Nanotechnology Information and Quantum Dots) elemental powders and suspensions, as alternative high surface area forms, may be considered. We also produce Barium Sulfate Powder.Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and deposited utilizing sputtering targets and evaporation materials for uses such as solar energy materials and fuel cells. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Barium (Ba) and molecular weight, atomic number and elemental symbolBarium (atomic symbol: Ba, atomic number: 56) is a Block S, Group 2, Period 6 element with an atomic weight of 137.27. The number of electrons in each of barium's shells is [2, 8, 18, 18, 8, 2] and its electron configuration is [Xe] 6s2. Barium Bohr ModelBarium is a member of the alkaline-earth metals. The barium atom has a radius of 222 pm and a Van der Waals radius of 268 pm. Barium was discovered by Carl Wilhelm Scheele in 1772 and first isolated by Humphry Davy in 1808. Elemental Barium In its elemental form, barium is a soft, silvery-gray metal. Industrial applications for barium include acting as a "getterer," or unwanted gas remover, for vacuum tubes, and as an additive to steel and cast iron. Barium is also alloyed with silicon and aluminum as load-bearing alloys. The main commercial source of barium is the mineral barite (BaSO4); it does not occur naturally as a free element . The name barium is derived from the Greek word "barys," meaning heavy. For more information on barium, including properties, safety data, research, and American Elements' catalog of barium products, visit the Barium Information Center.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne]3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777 when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur Information Center.

Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions 22-24/25
RTECS Number CR0600000
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)

Baryte, Sulfuric acid, barium salt (1:1), barium(+2) cation sulfate, Barium salt of sulfuric acid, Actybaryte, Colonatrast, Sulfuric acid, barium salt (1:1), Barosperse, Esophotrast

Show Me MORE Forms of Barium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Barium

  • Adrian Bele, Maria Cazacu, George Stiubianu, Stelian Vlad, Mircea Ignat, Polydimethylsiloxane–barium titanate composites: Preparation and evaluation of the morphology, moisture, thermal, mechanical and dielectric behavior, Composites Part B: Engineering, Volume 68, January 2015
  • Leliang Li, Jun Zheng, Yuhua Zuo, Buwen Cheng, Qiming Wang, Efficient 1.54-μm emission through Eu2+ sensitization of Er3+ in thin films of Eu2+/Er3+ codoped barium strontium silicate under broad ultraviolet light excitation, Journal of Luminescence, Volume 157, January 2015
  • Prasanna Padigi, Gary Goncher, David Evans, Raj Solanki, Potassium barium hexacyanoferrate – A potential cathode material for rechargeable calcium ion batteries, Journal of Power Sources, Volume 273, 1 January 2015
  • Agata Bialy, Peter B. Jensen, Didier Blanchard, Tejs Vegge, Ulrich J. Quaade, Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity, Journal of Solid State Chemistry, Volume 221, January 2015
  • Poonam Pahuja, R.K. Kotnala, R.P. Tandon, Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Pengrong Ren, Huiqing Fan, Xin Wang, Dong Guangzhi, Phase transition, high figure of merit and polar nano-regions in dielectric tunable lanthanum substituted barium titanate, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Xuebin Qiao, Yu Cheng, Lin Qin, Chuanxiang Qin, Peiqing Cai, Sun Il Kim, Hyo Jin Seo, Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Jen-Hsien Hsu, Cheol-Woon Kim, Richard K. Brow, Joe Szabo, Ray Crouch, Rob Baird, An alkali-free barium borosilicate viscous sealing glass for solid oxide fuel cells, Journal of Power Sources, Volume 270, 15 December 2014
  • Gan Jet Hong Melvin, Qing-Qing Ni, Toshiaki Natsuki, Electromagnetic wave absorption properties of barium titanate/carbon nanotube hybrid nanocomposites, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Junhai Shen, Keyu Chen, Liangchao Li, Weixiang Wang, Ye Jin, Fabrication and microwave absorbing properties of (Z-type barium ferrite/silica)@polypyrrole composites, Journal of Alloys and Compounds, Volume 615, 5 December 2014

Recent Research & Development for Sulfates

  • Marta García-Maté, Angeles G. De la Torre, Laura León-Reina, Enrique R. Losilla, Miguel A.G. Aranda, Isabel Santacruz, Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement, Cement and Concrete Composites, Volume 55, January 2015
  • Jin Gi Hong, Yongsheng Chen, Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide, Journal of Membrane Science, Volume 473, 1 January 2015
  • Jie-Cen Zhong, Fang Wan, Yan-Qiong Sun, Yi-Ping Chen, Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid, Journal of Solid State Chemistry, Volume 221, January 2015
  • Haihan Zhou, Gaoyi Han, Dongying Fu, Yunzhen Chang, Yaoming Xiao, Hua-Jin Zhai, Petal-shaped poly(3,4-ethylenedioxythiophene)/sodium dodecyl sulfate-graphene oxide intercalation composites for high-performance electrochemical energy storage, Journal of Power Sources, Volume 272, 25 December 2014
  • Edgar Ventosa, Marcel Skoumal, Francisco Javier Vázquez, Cristina Flox, Joan Ramon Morante, Operando studies of all-vanadium flow batteries: Easy-to-make reference electrode based on silver–silver sulfate, Journal of Power Sources, Volume 271, 20 December 2014
  • Xiaoshi Lang, Dianlong Wang, Chiyu Hu, Shenzhi Tang, Junsheng Zhu, Chenfeng Guo, The use of nanometer tetrabasic lead sulfate as positive active material additive for valve regulated lead-acid battery, Journal of Power Sources, Volume 270, 15 December 2014
  • L. Liu, J.P. Cheng, J. Zhang, F. Liu, X.B. Zhang, Effects of dodecyl sulfate and nitrate anions on the supercapacitive properties of α-Co(OH)2, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • J. Stroh, M.-C. Schlegel, E.F. Irassar, B. Meng, F. Emmerling, Applying high resolution SyXRD analysis on sulfate attacked concrete field samples, Cement and Concrete Research, Volume 66, December 2014
  • Neda Mobasher, Susan A. Bernal, Oday H. Hussain, David C. Apperley, Hajime Kinoshita, John L. Provis, Characterisation of Ba(OH)2–Na2SO4–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes, Cement and Concrete Research, Volume 66, December 2014
  • Mark Whittaker, Maciej Zajac, Mohsen Ben Haha, Frank Bullerjahn, Leon Black, The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends, Cement and Concrete Research, Volume 66, December 2014