Boron Tribromide Dimethyl Sulfide Complex

(CH3)2S • BBr3
CAS 29957-59-3

Product Product Code Order or Specifications
(2N) 99% Boron Tribromide Dimethyl Sulfide Complex B-OM-02 Contact American Elements
(3N) 99.9% Boron Tribromide Dimethyl Sulfide Complex B-OM-03 Contact American Elements
(4N) 99.99% Boron Tribromide Dimethyl Sulfide Complex B-OM-04 Contact American Elements
(5N) 99.999% Boron Tribromide Dimethyl Sulfide Complex B-OM-05 Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
(CH3)2S • BBr3 29957-59-3 24854866 4181510 MFCD00043296 N/A tribromo
N/A Br[B-](Br)(Br)[S+](C)C InChI=1S/C2H6BBr3S/c1-7(2)3(4,5)6/h1-2H3 NCVLHAUANAMSTL-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
C2H6BBr3S 312.66 Yellow, red, orange, or brown liquid 106-108 °C
(223-226 °F)
N/A 1.456 g/mL 311.781293 309.783325 Da 0 Safety Data Sheet

Sulfide IonBoron Tribromide Dimethyl Sulfide Complex is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Boron(B) atomic and molecular weight, atomic number and elemental symbolBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. Boron Bohr Model The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808. It was first isolated by Humphry Davy, also in 1808. Boron is classified as a metalloid is not found naturally on earth. Elemental Boron Along with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds.Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. Boron is found in borates, borax, boric acid, colemanite, kernite, and ulexite.The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax. For more information on boron, including properties, safety data, research, and American Elements' catalog of boron products, visit the Boron Information Center.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne]3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777 when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur Information Center.

Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes T
Risk Codes 23/24/25-34-40
Safety Precautions 26-27-28-36/37/39-45
RTECS Number N/A
Transport Information UN 3265 8/PG 2
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)

Dimethyl sulfide-tribromoborane; Tribromoborane-methyl sulfide; Tribromo[(methylsulfanyl)methane]boron; Boron tribromide dimethyl sulfide complex solution; tribromo(sulfide)boron; Boron tribromide dimethyl sulfide complex; Dimethyl sulfide-tribromoborane; Tribromoborane-methyl sulfide; tribromo-dimethylsulfonioboron

Show Me MORE Forms of Boron

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Boron

  • Immunosuppressive agent leflunomide: A SWNTs-immobilized dihydroortate dehydrogenase inhibitory effect and computational study of its adsorption properties on zigzag single walled (6,0) carbon and boron nitride nanotubes as controlled drug delivery devices. Raissi H, Mollania F. Eur J Pharm Sci. 2014.
  • An improved procedure for separation/purification of boron from complex matrices and high-precision measurement of boron isotopes by positive thermal ionization and multicollector inductively coupled plasma mass spectrometry. Wei HZ, Jiang SY, Gary Hemming N, Yang JH, Yang T, Wu HP, Yang TL, Yan X, Pu W. Talanta. 2014.
  • Towards the design of novel boron- and nitrogen-substituted ammonia-borane and bifunctional arene ruthenium catalysts for hydrogen storage. Bandaru S, English NJ, Phillips AD, Macelroy JM. J Comput Chem. 2014.
  • Dipolar polarization and piezoelectricity of a hexagonal boron nitride sheet decorated with hydrogen and fluorine. Noor-A-Alam M, Kim HJ, Shin YH. Phys Chem Chem Phys. 2014.
  • The role of isovalency in the reactions of the cyano (CN), boron monoxide (BO), silicon nitride (SiN), and ethynyl (C2H) radicals with unsaturated hydrocarbons acetylene (C2H2) and ethylene (C2H4). Parker DS, Mebel AM, Kaiser RI. Chem Soc Rev. 2014.
  • Indirect photometric detection of boron cluster anions electrophoretically separated in methanol. Vítová L, Fojt L, Vespalec R. J Chromatogr A. 2014.
  • Mechanical properties of boron-nitride nanotubes after intense femtosecond-laser excitation. Bauerhenne B, Zijlstra ES, Kalitsov A, Garcia ME. Nanotechnology. 2014.
  • Effects of boron on structure and antioxidative activities of spleen in rats. Hu Q, Li S, Qiao E, Tang Z, Jin E, Jin G, Gu Y. Biol Trace Elem Res. 2014.
  • Boron deficiency results in early repression of a cytokinin receptor gene and abnormal cell differentiation in the apical root meristem of Arabidopsis thaliana. Abreu I, Poza L, Bonilla I, Bolaños L. Plant Physiol Biochem. 2014.
  • A clear-cut example of selective bpin?bdan activation and precise bdan transfer on boron conjugate addition. Cid J, Carbó JJ, Fernández E. Chemistry. 2014.
  • Electronic and magnetic properties of boron nitride nanoribbons with square-octagon (4?|?8) line defects. Han Y, Li R, Zhou J, Dong J, Kawazoe Y. Nanotechnology. 2014 Mar.
  • Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption. Vikramaditya T, Sumithra K. J Comput Chem. 2014.
  • Boron removal by electrocoagulation and recovery. Isa MH, Ezechi EH, Ahmed Z, Magram SF, Kutty SR. Water Res. 2014.
  • Lattice match and lattice mismatch models of graphene on hexagonal boron nitride from first principles. Zhao X, Li L, Zhao M. J Phys Condens Matter.
  • Oxovanadium(v)-induced diastereoselective oxidative homocoupling of boron enolates. Amaya T, Masuda T, Maegawa Y, Hirao T. Chem Commun (Camb). 2014 Mar.
  • Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release. Tabelin CB, Hashimoto A, Igarashi T, Yoneda T. Sci Total Environ. 2014 Mar.
  • The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Michiue H, Sakurai Y, Kondo N, Kitamatsu M, Bin F, Nakajima K, Hirota Y, Kawabata S, Nishiki T, Ohmori I, Tomizawa K, Miyatake S, Ono K, Matsui H. Biomaterials. 2014 Mar.
  • Is Ca(2+) involved in the signal transduction pathway of boron deficiency? New hypotheses for sensing boron deprivation. González-Fontes A, Navarro-Gochicoa MT, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Quiles-Pando C, Rexach J. Plant Sci. 2014 Mar.
  • Density of states of helically symmetric boron carbon nitride nanotubes. J Phys Condens Matter. 2014 | first author:Carvalho AC
  • Luminescence of solvate of boron difluoride dibenzoylmethanate with benzene: Aggregates formation. Fedorenko EV, Mirochnik AG, Lvov IB, Vovna VI. Spectrochim Acta A Mol Biomol Spectrosc. 2014 Feb.

Recent Research & Development for Sulfides

  • Hydrogen sulfide and cell signaling: Team player or referee? Hancock JT, Whiteman M. Plant Physiol Biochem. 2014.
  • Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg(II)) from water. Han DS, Orillano M, Khodary A, Duan Y, Batchelor B, Abdel-Wahab A. Water Res. 2014.
  • Kinetic and stoichiometric characterization of anoxic sulfide oxidation by SO-NR mixed cultures from anoxic biotrickling filters. Mora M, Fernández M, Gómez JM, Cantero D, Lafuente J, Gamisans X, Gabriel D. Appl Microbiol Biotechnol. 2014.
  • Synthesis of nickel sulfide nanoparticles loaded on activated carbon as a novel adsorbent for the competitive removal of Methylene blue and Safranin-O. Ghaedi M, Pakniat M, Mahmoudi Z, Hajati S, Sahraei R, Daneshfar A. Spectrochim Acta A Mol Biomol Spectrosc. 2014
  • Disturbance of endogenous hydrogen sulfide generation and endoplasmic reticulum stress in hippocampus are involved in homocysteine-induced defect in learning and memory of rats. Li MH, Tang JP, Zhang P, Li X, Wang CY, Wei HJ, Yang XF, Zou W, Tang XQ. Behav Brain Res. 2014
  • Biochemical and behavioural responses of the marine polychaete Hediste diversicolor to cadmium sulfide quantum dots (CdS QDs): Waterborne and dietary exposure. Buffet PE, Poirier L, Zalouk-Vergnoux A, Lopes C, Amiard JC, Gaudin P, Risso-de Faverney C, Guibbolini M, Gilliland D, Perrein-Ettajani H, Valsami-Jones E, Mouneyrac C. Chemosphere. 2014
  • GYY4137, a hydrogen sulfide (H2S) donor, shows potent anti-hepatocellular carcinoma activity through blocking the STAT3 pathway. Lu S, Gao Y, Huang X, Wang X. Int J Oncol. 2014
  • Manipulating surface ligands of Copper Sulfide nanocrystals: Synthesis, characterization, and application to organic solar cells. Li J, Jiu T, Tao GH, Wang G, Sun C, Li P, Fang J, He L. J Colloid Interface Sci. 2014
  • Recolonization of macrozoobenthos on defaunated sediments in a hypertrophic brackish lagoon: Effects of sulfide removal and sediment grain size. Kanaya G. Mar Environ Res. 2014
  • Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon. Roosta M, Ghaedi M, Daneshfar A, Sahraei R. Spectrochim Acta A Mol Biomol Spectrosc. 2014
  • Metal sulfide-functionalized DNA concatamer for ultrasensitive electronic monitoring of ATP using a programmable capillary-based aptasensor. Liu B, Zhang B, Chen G, Yang H, Tang D. Biosens Bioelectron. 2014 Mar.
  • Self-assembly of manganese doped zinc sulfide quantum dots/CTAB nanohybrids for detection of rutin. Biosens Bioelectron. 2014 | first author:Miao Y
  • Silver sulfide nanoparticles sensitized titanium dioxide nanotube arrays synthesized by in situ sulfurization for photocatalytic hydrogen production. J Colloid Interface Sci. 2014 | first author:Liu X
  • A sensitive method for the sulfur isotope analysis of dimethyl sulfide and dimethylsulfoniopropionate in seawater. Rapid Commun Mass Spectrom. 2013 | first author:Said-Ahmad W
  • Target-stimulated metallic HgS nanostructures on a DNA-based polyion complex membrane for highly efficient impedimetric detection of dissolved hydrogen sulfide. Chem Commun (Camb). 2013 | first author:Zhuang J
  • A fatal work-related poisoning by hydrogen sulfide: report on a case. Am J Forensic Med Pathol. 2013 create date:2013/11/08 | first author:Lancia M
  • Highly enantioselective oxidation of phenyl methyl sulfide and its derivatives into optically pure (S)-sulfoxides with Rhodococcus sp. CCZU10-1 in an n-octane-water biphasic system. Appl Microbiol Biotechnol. 2013 create date:2013/10/05 | first author:He YC
  • Biochemical properties of nematode O-acetylserine(thiol)lyase paralogs imply their distinct roles in hydrogen sulfide homeostasis. Biochim Biophys Acta. 2013 | first author:Vozdek R
  • Involvement of hydrogen sulfide and homocysteine transsulfuration pathway in the progression of kidney fibrosis after ureteral obstruction. Biochim Biophys Acta. 2013 | first author:Jung KJ
  • High electrocatalytic activity of self-standing hollow NiCo2S4 single crystalline nanorod arrays towards sulfide redox shuttles in quantum dot-sensitized solar cells. Chem Commun (Camb). | first author:Xiao J