Boron Tribromide Dimethyl Sulfide Complex

(CH3)2S • BBr3
CAS 29957-59-3


Product Product Code Order or Specifications
(2N) 99% Boron Tribromide Dimethyl Sulfide Complex B-OM-02 Contact American Elements
(3N) 99.9% Boron Tribromide Dimethyl Sulfide Complex B-OM-03 Contact American Elements
(4N) 99.99% Boron Tribromide Dimethyl Sulfide Complex B-OM-04 Contact American Elements
(5N) 99.999% Boron Tribromide Dimethyl Sulfide Complex B-OM-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
(CH3)2S • BBr3 29957-59-3 24854866 4181510 MFCD00043296 N/A tribromo
(dimethylsulfonio)
boranuide
N/A Br[B-](Br)(Br)[S+](C)C InChI=1S/C2H6BBr3S/c1-7(2)3(4,5)6/h1-2H3 NCVLHAUANAMSTL-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
C2H6BBr3S 312.66 Yellow, red, orange, or brown liquid 106-108 °C
(223-226 °F)
N/A 1.456 g/mL 311.781293 309.783325 Da 0 Safety Data Sheet

Sulfide IonBoron Tribromide Dimethyl Sulfide Complex is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Boron(B) atomic and molecular weight, atomic number and elemental symbolBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. Boron Bohr Model The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808. It was first isolated by Humphry Davy, also in 1808. Boron is classified as a metalloid is not found naturally on earth. Elemental Boron Along with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds.Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. Boron is found in borates, borax, boric acid, colemanite, kernite, and ulexite.The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax. For more information on boron, including properties, safety data, research, and American Elements' catalog of boron products, visit the Boron Information Center.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne]3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777 when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes T
Risk Codes 23/24/25-34-40
Safety Precautions 26-27-28-36/37/39-45
RTECS Number N/A
Transport Information UN 3265 8/PG 2
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

BORON TRIBROMIDE DIMETHYL SULFIDE COMPLEX SYNONYMS
Dimethyl sulfide-tribromoborane; Tribromoborane-methyl sulfide; Tribromo[(methylsulfanyl)methane]boron; Boron tribromide dimethyl sulfide complex solution; tribromo(sulfide)boron; Boron tribromide dimethyl sulfide complex; Dimethyl sulfide-tribromoborane; Tribromoborane-methyl sulfide; tribromo-dimethylsulfonioboron

CUSTOMERS FOR BORON TRIBROMIDE DIMETHYL SULFIDE COMPLEX HAVE ALSO LOOKED AT
Show Me MORE Forms of Boron

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Boron

  • S.J. Grauer, E.J.F.R. Caron, N.L. Chester, M.A. Wells, K.J. Daun, Investigation of melting in the Al–Si coating of a boron steel sheet by differential scanning calorimetry, Journal of Materials Processing Technology, Volume 216, February 2015
  • Leili Tafaghodi Khajavi, Kazuki Morita, Takeshi Yoshikawa, Mansoor Barati, Thermodynamics of boron distribution in solvent refining of silicon using ferrosilicon alloys, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Shigeaki Ono, Kenji Mibe, Naohisa Hirao, Yasuo Ohishi, In situ Raman spectroscopy of cubic boron nitride to 90 GPa and 800 K, Journal of Physics and Chemistry of Solids, Volume 76, January 2015
  • Zhaofu Zhang, Zhaohui Geng, Danyun Cai, Tongxi Pan, Yixin Chen, Liyuan Dong, Tiege Zhou, Structure, electronic and magnetic properties of hexagonal boron nitride sheets doped by 5d transition metal atoms: First-principles calculations and molecular orbital analysis, Physica E: Low-dimensional Systems and Nanostructures, Volume 65, January 2015
  • Zihab Sohbatzadeh, M.R. Roknabadi, Nasser Shahtahmasebi, Mohammad Behdani, Spin-dependent transport properties of an armchair boron-phosphide nanoribbon embedded between two graphene nanoribbon electrodes, Physica E: Low-dimensional Systems and Nanostructures, Volume 65, January 2015
  • B. Podgornik, T. Kosec, A. Kocijan, Č. Donik, Tribological behaviour and lubrication performance of hexagonal boron nitride (h-BN) as a replacement for graphite in aluminium forming, Tribology International, Volume 81, January 2015
  • Jianfeng Wang, Liguo Wang, Shaokang Guan, Shijie Zhu, Ran Li, Tao Zhang, Effects of boron content on the glass-forming ability and mechanical properties of Co–B–Ta glassy alloys, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Binhua Chu, Da Li, Kuo Bao, Fubo Tian, Defang Duan, Xiaojing Sha, Pugeng Hou, Yunxian Liu, Huadi Zhang, Bingbing Liu, Tian Cui, Ultrahard boron-rich tantalum boride: Monoclinic TaB4, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Shengkui Zhong, Lihua Zhou, Ling Wu, Lianfeng Tang, Qiyi He, Jalal Ahmed, Nitrogen- and boron-co-doped core–shell carbon nanoparticles as efficient metal-free catalysts for oxygen reduction reactions in microbial fuel cells, Journal of Power Sources, Volume 272, 25 December 2014
  • Ling Li, Xichuan Yang, Wenming Zhang, Huayan Zhang, Xiaowei Li, Boron and sulfur co-doped TiO2 nanofilm as effective photoanode for high efficiency CdS quantum-dot-sensitized solar cells, Journal of Power Sources, Volume 272, 25 December 2014

Recent Research & Development for Sulfides

  • Peng-Fei Yin, Chao Zhou, Xiang-Yu Han, Zheng-Ren Zhang, Chuan-Hui Xia, Li-Li Sun, Shape and phase evolution of nickel sulfide nano/microcrystallines via a facile way, Journal of Alloys and Compounds, Volume 620, 25 January 2015
  • Sohail Saeed, Khuram Shahzad Ahmed, Naghmana Rashid, Mohammad Azad Malik, Paul O’Brien, Masood Akhtar, Rizwan Hussain, Wing-Tak Wong, Symmetrical and unsymmetrical nickel(II) complexes of N-(dialkylcarbamothioyl)-nitro substituted benzamide as single-source precursors for deposition of nickel sulfide nanostructured thin films by AACVD, Polyhedron, Volume 85, 8 January 2015
  • M. Afshari, M. Moradi, M. Rostami, Structural, electronic and magnetic properties of the (001), (110) and (111) surfaces of rocksalt sodium sulfide: A first-principles study, Journal of Physics and Chemistry of Solids, Volume 76, January 2015
  • D.G. Li, J.D. Wang, D.R. Chen, P. Liang, Influences of pH value, temperature, chloride ions and sulfide ions on the corrosion behaviors of 316L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell, Journal of Power Sources, Volume 272, 25 December 2014
  • Chunlin Bao, Guoxing Zhu, Mengqi Shen, Jing Yang, Carbon-coated Zinc Sulfide nano-clusters: Synthesis, photothermal conversion and adsorption properties, Journal of Colloid and Interface Science, Volume 436, 15 December 2014
  • Man-Ning Lu, Chao-Shuan Dai, Sheng-Yen Tai, Tsung-Wu Lin, Jeng-Yu Lin, Hierarchical nickel sulfide/carbon nanotube nanocomposite as a catalytic material toward triiodine reduction in dye-sensitized solar cells, Journal of Power Sources, Volume 270, 15 December 2014
  • Caihong Feng, Le Zhang, Zhihui Wang, Xiangyun Song, Kening Sun, Feng Wu, Gao Liu, Synthesis of copper sulfide nanowire bundles in a mixed solvent as a cathode material for lithium-ion batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • Guiqiang Wang, Juan Zhang, Shuai Kuang, Shaomin Liu, Shuping Zhuo, The production of cobalt sulfide/graphene composite for use as a low-cost counter-electrode material in dye-sensitized solar cells, Journal of Power Sources, Volume 269, 10 December 2014
  • Xiaodong Li, Zemin Zhang, Lulu Chen, Zhongping Liu, Jianli Cheng, Wei Ni, Erqing Xie, Bin Wang, Cadmium sulfide quantum dots sensitized tin dioxide–titanium dioxide heterojunction for efficient photoelectrochemical hydrogen production, Journal of Power Sources, Volume 269, 10 December 2014
  • Erkan Aydin, Mehmet Sankir, Nurdan Demirci Sankir, Conventional and rapid thermal annealing of spray pyrolyzed copper indium gallium sulfide thin films, Journal of Alloys and Compounds, Volume 615, 5 December 2014