Skip to Page Content

Boron-10 Carbide Isotope


Product Product Code Request Quote
Boron-10 Carbide BO10-C-01-ISO Request Quote

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
10B4C 200443-95-4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density Exact Mass Monoisotopic Mass Charge MSDS
10B4C N/A Metallic gray to black powder or solid 2450 °C 3500 °C 2.51 g/cm3 N/A N/A N/A Safety Data Sheet

Boron 10 Carbide (Boron-10) is a stable (non-radioactive) isotope of Boron. It is both naturally occurring and produced by fission. Boron 10 Carbide is one of over 250 stable isotopes produced by American Elements for biological and biomedical labeling, as target materials and other applications. Boron Carbide is also available in ultra high purity and as nanoparticles. For the thin film applications it is available as rod, pellets, pieces, granules and sputtering targets and as either an ingot or powder. Boron Carbide 10 isotopic material is generally immediately available. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Boron(B) atomic and molecular weight, atomic number and elemental symbolBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. Boron Bohr Model The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808. It was first isolated by Humphry Davy, also in 1808. Boron is classified as a metalloid is not found naturally on earth. Elemental Boron Along with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. Boron is found in borates, borax, boric acid, colemanite, kernite, and ulexite.The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax. For more information on boron, including properties, safety data, research, and American Elements' catalog of boron products, visit the Boron element page.

Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes Xn, Xi
Risk Codes 20/22-36/37
Safety Precautions N/A
RTECS Number N/A
Transport Information UN1008
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)

Boron 10B Carbide; B10 Enriched Boron Carbide

Boron Pellets Boron Rod Boron Bars Aluminum Boron Alloy Boron Oxide Nanopowder
Boron Chloride Boron Metal Boron Oxide Boron Oxide Pellets Boron Phosphate
Boron Powder Boron Foil Boron Sputtering Target Nickel Silicon Boron Alloy Boron NanoPowder
Show Me MORE Forms of Boron

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Boron

  • Organocatalytic Diboration Involving “Reductive Addition” of a Boron–Boron Bond to 4,4’-Bipyridine. Toshimichi Ohmura, Yohei Morimasa, and Michinori Suginome. J. Am. Chem. Soc.: February 10, 2015
  • Improving the Quality of GaN Crystals by using Graphene or Hexagonal Boron Nitride Nanosheets Substrate. Lei Zhang, Xianlei Li, Yongliang Shao, Jiaoxian Yu, Yongzhong Wu, Xiaopeng Hao, Zhengmao Yin, Yuanbin Dai, Yuan Tian, Qin Huo, Yinan Shen, Zhen Hua, and Baoguo Zhang. ACS Appl. Mater. Interfaces: February 9, 2015
  • Synthesis of Boron-Containing Toughening Agents and Their Application in Phenolic foams. Lin Liu, Mingtao Fu, and Zhengzhou Wang. Ind. Eng. Chem. Res.: February 3, 2015
  • Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. Yongji Gong, Huilong Fei, Xiaolong Zou, Wu Zhou, Shubin Yang, Gonglan Ye, Zheng Liu, Zhiwei Peng, Jun Lou, Robert Vajtai, Boris I. Yakobson, James M. Tour, and Pulickel M. Ajayan. Chem. Mater.: February 2, 2015
  • Alkyl-Chain-Grafted Hexagonal Boron Nitride Nanoplatelets as Oil-Dispersible Additives for Friction and Wear Reduction. Sangita Kumari, Om P. Sharma, Rashi Gusain, Harshal P. Mungse, Aruna Kukrety, Niranjan Kumar, Hiroyuki Sugimura, and Om P. Khatri. ACS Appl. Mater. Interfaces: January 27, 2015
  • Combined Crossed Molecular Beam and Ab Initio Investigation of the Reaction of Boron Monoxide (BO; X2?+) with 1,3-Butadiene (CH2CHCHCH2; X1Ag) and Its Deuterated Counterparts. Surajit Maity, Beni B. Dangi, Dorian S. N. Parker, and Ralf. I. Kaiser , Hong-Mao Lin, Hai-Ping E, Bing-Jian Sun, and A. H. H. Chang. J. Phys. Chem. A: January 27, 2015
  • Polymorphic Behavior and Enzymatic Degradation of Poly(butylene adipate) in the Presence of Hexagonal Boron Nitride Nanosheets. Yi-Ren Tang, Jun Xu, and Bao-Hua Guo. Ind. Eng. Chem. Res.: January 26, 2015
  • B-N Bond Cleavage and BN Ring Expansion at the Surface of Boron Nitride Nanotubes by Iminoborane. Rajashabala Sundaram, Steve Scheiner, Ajit K. Roy, and Tapas Kar. J. Phys. Chem. C: January 20, 2015
  • Ring Expansion Reactions of Pentaphenylborole with Dipolar Molecules as a Route to Seven-Membered Boron Heterocycles. Kexuan Huang and Caleb D. Martin. Inorg. Chem.: January 17, 2015
  • Comparative Study of Oxygen Reduction Reaction Mechanism on Nitrogen-, Phosphorus-, and Boron-Doped Graphene Surfaces for Fuel Cell Applications. M. del Cueto, P. Ocón, and J. M. L. Poyato. J. Phys. Chem. C: January 15, 2015