Beryllium Foil

High Purity Be Foil
CAS 7440-41-7


Product Product Code Order or Specifications
(2N) 99% Beryllium Foil BE-M-02-F Contact American Elements
(2N5) 99.5% Beryllium Foil BE-M-025-F Contact American Elements
(3N) 99.9% Beryllium Foil BE-M-03-F Contact American Elements
(3N5) 99.95% Beryllium Foil BE-M-035-F Contact American Elements
(4N) 99.99% Beryllium Foil BE-M-04-F Contact American Elements
(5N) 99.999% Beryllium Foil BE-M-05-F Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Be 7440-41-7 24856053 5460467 MFCD00134032 231-150-7 N/A [BeH2] InChI=1S/Be ATBAMAFKBVZNFJ-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
9.01 N/A 1.848 gm/cc N/A 1277 °C 2970 °C 2.01 W/cm/K @ 298.2 K 4.0 microhm-cm @ 20 oC 1.5 Paulings 0.436 Cal/g/K @ 25 °C 73.9 K-cal/gm atom at 2467 °C 2.8 Cal/gm mole Safety Data Sheet

See Beryllium Foil research below and pricing/lead time above. American Elements specializes in producing Beryllium High Purity Foil and sheets in many thicknesses and sizes for numerous industrial uses and provides health and occupational safety information for this product. Most foils are produced from cast Ingots for use in coating and thin film Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including High Purity FoilThermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Organometallic and Chemical Vapor Deposition (MOCVD) for specific applications such as fuel cells and solar energy. Thickness can range from 0.003" to approximately 2mm for all metals. Some metals can also be rolled down as thin as 0.001” for use as an evaporation source in microelectronics, optics, magnetics, MEMS, and hard resistant coatings. Piece sizes are available up to approximately 7" maximum width. Maximum lengths of about 20" can be obtained with a nominal thickness between about 0.005" and 0.020" for thin film deposition on glass or metal substrates. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and in the form of solutions and organometallics. We also produce Beryllium as rods, powder and plates. Other shapes are available by request.

Beryllium (Be) atomic and molecular weight, atomic number and elemental symbol Beryllium (atomic symbol: Be, atomic number: 4) is a Block S, Group 2, Period 2 element with an atomic weight of 9.012182. Beryllium Bohr ModelThe number of electrons in each of Beryllium's shells is [2, 2] and its electron configuration is [He] 2s2. The beryllium atom has a radius of 112 pm and a Van der Waals radius of 153 pm. Beryllium is a relatively rare element in the earth's crust; it can be found in minerals such as bertrandite, chrysoberyl, phenakite, and beryl, its most common source for commercial production. Beryllium was discovered by Louis Nicolas Vauquelin in 1797 and first isolated by Friedrich Wöhler and Antoine Bussy in 1828.Elemental Beryllium In its elemental form, beryllium has a gray metallic appearance. It is a soft metal that is both strong and brittle; its low density and high thermal conductivity make it useful for aerospace and military applications. It is also frequently used in X-ray equipment and particle physics. The origin of the name Beryllium comes from the Greek word "beryllos," meaning beryl. For more information on beryllium, including properties, safety data, research, and American Elements' catalog of beryllium products, visit the Beryllium Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H301-H315-H317-H319-H330-H335-H350i-H372
T+
49-25-26-36/37/38-43-48/23
53-45
DS1750000
UN 1567 6.1/PG 2
3
Skull and Crossbones-Acute Toxicity  Health Hazard      

CUSTOMERS FOR BERYLLIUM FOIL HAVE ALSO LOOKED AT
Show Me MORE Forms of Beryllium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Beryllium

  • R.P. Doerner, M.J. Baldwin, D. Nishijima, Plasma-induced morphology of beryllium targets exposed in PISCES-B, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • Jae-Hwan Kim, Masaru Nakamichi, Reactivity of plasma-sintered beryllium–titanium intermetallic compounds with water vapor, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • Jae-Hwan Kim, Masaru Nakamichi, Effect of grain size on the hardness and reactivity of plasma-sintered beryllium, Journal of Nuclear Materials, Volume 453, Issues 1–3, October 2014
  • J. Roth, W.R. Wampler, M. Oberkofler, S. van Deusen, S. Elgeti, Deuterium retention and out-gassing from beryllium oxide on beryllium, Journal of Nuclear Materials, Volume 453, Issues 1–3, October 2014
  • R. García-Gutiérrez, M. Barboza-Flores, D. Berman-Mendoza, O.E. Contreras-López, A. Ramos-Carrazco, Synthesis and characterization of highly luminescent beryllium nitride, Materials Letters, Volume 132, 1 October 2014
  • K. Hacini, Z. Chouahda, A. Djedid, H. Meradji, S. Ghemid, F. El Haj Hassan, R. Khenata, Ab initio study of the structural, electronic, phase diagram, and thermal properties of cadium beryllium selenide mixed crystals, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • Lyudmila Chekushina, Daulet Dyussambaev, Asset Shaimerdenov, Kunihiko Tsuchiya, Tomoaki Takeuchi, Hiroshi Kawamura, Timur Kulsartov, Properties of tritium/helium release from hot isostatic pressed beryllium of various trademarks, Journal of Nuclear Materials, Volume 452, Issues 1–3, September 2014
  • Shweta Dabhi, Venu Mankad, Prafulla K. Jha, A First Principles Study of Phase Stability, Bonding, Electronic and Lattice Dynamical Properties of Beryllium Chalcogenides at high pressure, Journal of Alloys and Compounds, Available online 11 August 2014
  • Katharina Dobes, Martin Köppen, Martin Oberkofler, Cristian P. Lungu, Corneliu Porosnicu, Till Höschen, Gerd Meisl, Christian Linsmeier, Friedrich Aumayr, Interaction of nitrogen ions with beryllium surfaces, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Available online 7 August 2014
  • Bo Xiao, Xuefang Yu, Hong Hu, Yihong Ding, Beryllium decorated armchair boron nitride nanoribbon: A new planar tetracoordinate nitride containing system with enhanced conductivity, Chemical Physics Letters, Volume 608, 21 July 2014
  • Pengbo Zhang, Jijun Zhao, Interactions of extrinsic interstitial atoms (H, He, O, C) with vacancies in beryllium from first-principles, Computational Materials Science, Volume 90, July 2014
  • Guo-Ming Wang, Jin-Hua Li, Xiao Zhang, Wen-Wen Jiang, Zhen-Zhen Bao, Xiao-Meng Zhao, Ying-Xia Wang, Jian-Hua Lin, (C5H6N)4[Be6(HPO3)8]·H2O: A low-density open-framework beryllium phosphite with multidirectional 12-ring channels, Solid State Sciences, Volume 33, July 2014
  • Gonzalo García, Chantal Stoffelsma, Paramaconi Rodriguez, Marc T.M. Koper, Influence of beryllium cations on the electrochemical oxidation of methanol on stepped platinum surfaces in alkaline solution, Surface Science, Available online 27 June 2014
  • Zhi-Cheng Guo, Fen Luo, Yan Cheng, Phase transition and thermodynamic properties of beryllium from first-principles calculations, Computational Materials Science, Volume 84, March 2014
  • Lijun He, Demei Xu, Nan Hu, Tingting Li, Jingming Zhong, Min Luo, Internal Mechanism Analysis of Modeling on Particles Size Distribution Characteristics of Impact Attrition Beryllium Powders, Rare Metal Materials and Engineering, Volume 43, Issue 3, March 2014
  • Xue Yang, Ahmed Hassanein, Atomic scale calculations of tungsten surface binding energy and beryllium-induced tungsten sputtering, Applied Surface Science, Volume 293, 28 February 2014
  • Pablo A. Denis, Federico Iribarne, Theoretical investigation on the interaction between beryllium, magnesium and calcium with benzene, coronene, cirumcoronene and graphene, Chemical Physics, Volume 430, 17 February 2014
  • L. Yang, F.Y. Zhang, M.F. Yan, M.L. Zhang, Microstructure and mechanical properties of multiphase layer formed during thermo-diffusing of titanium into the surface of C17200 copper–beryllium alloy, Applied Surface Science, Volume 292, 15 February 2014
  • K. Esmati, H. Omidvar, J. Jelokhani, M. Naderi, Study on the microstructure and mechanical properties of diffusion brazing joint of C17200 Copper Beryllium alloy, Materials & Design, Volume 53, January 2014
  • Guo-Ming Wang, Xiao Zhang, Jin-Hua Li, Pei Wang, Zong-Hua Wang, Ying-Xia Wang, Jian-Hua Lin, Synthesis and characterization of a new organically templated open-framework beryllium phosphite with 3, 4-connected networks, Solid State Sciences, Volume 27, January 2014