Beryllium Sputtering Target

High Purity Be Sputtering Target
CAS 7440-41-7


Product Product Code Order or Specifications
(2N) 99% Beryllium Metal Sputtering Target BE-M-02-ST Contact American Elements
(2N5) 99.5% Beryllium Metal Sputtering Target BE-M-025-ST Contact American Elements
(3N) 99.9% Beryllium Metal Sputtering Target BE-M-03-ST Contact American Elements
(3N5) 99.95% Beryllium Metal Sputtering Target BE-M-035-ST Contact American Elements
(4N) 99.99% Beryllium Metal Sputtering Target BE-M-04-ST Contact American Elements
(5N) 99.999% Beryllium Metal Sputtering Target BE-M-05-ST Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Be 7440-41-7 24856053 5460467 MFCD00134032 231-150-7 N/A [BeH2] InChI=1S/Be ATBAMAFKBVZNFJ-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
9.01 Grey 1.848 gm/cc N/A 1277 °C 2970 °C 2.01 W/cm/K @ 298.2 K 4.0 microhm-cm @ 20 oC 1.5 Paulings 0.436 Cal/g/K @ 25 °C 73.9 K-cal/gm atom at 2467 °C 2.8 Cal/gm mole Safety Data Sheet

American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP High Purity (99.999%) Beryllium (Be) Sputtering Target(European Pharmacopeia/British Pharmacopeia) and follows applicable ASTM testing standards.See safety data and research below and pricing/lead time above. American Elements specializes in producing high purity Beryllium sputtering targets with the highest possible densityand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard Sputtering Targets for thin film are available monoblock or bonded with dimensions and configurations up to 820 mm with hole drill locations and threading, beveling, grooves and backing designed to work with both older sputtering devices as well as the latest process equipment, such as large area coating for solar energy or fuel cells and flip-chip applications. Research sized targets are also produced as well as custom sizes and alloys. All targets are analyzed using best demonstrated techniques including X-Ray Fluorescence (XRF), Glow Discharge Mass Spectrometry (GDMS), and Inductively Coupled Plasma (ICP). "Sputtering" allows for thin film deposition of an ultra high purity sputtering metallic or oxide material onto another solid substrate by the controlled removal and conversion of the target material into a directed gaseous/plasma phase through ionic bombardment. We can also provide targets outside this range in addition to just about any size rectangular, annular, or oval target. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and in the form of solutions and organometallics. We also produce Beryllium as rod, ingot, powder, pieces, disc, granules, wire, and in compound forms, such as oxide. Other shapes are available by request.

Beryllium (Be) atomic and molecular weight, atomic number and elemental symbol Beryllium (atomic symbol: Be, atomic number: 4) is a Block S, Group 2, Period 2 element with an atomic weight of 9.012182. Beryllium Bohr ModelThe number of electrons in each of Beryllium's shells is [2, 2] and its electron configuration is [He] 2s2. The beryllium atom has a radius of 112 pm and a Van der Waals radius of 153 pm. Beryllium is a relatively rare element in the earth's crust; it can be found in minerals such as bertrandite, chrysoberyl, phenakite, and beryl, its most common source for commercial production. Beryllium was discovered by Louis Nicolas Vauquelin in 1797 and first isolated by Friedrich Wöhler and Antoine Bussy in 1828.Elemental Beryllium In its elemental form, beryllium has a gray metallic appearance. It is a soft metal that is both strong and brittle; its low density and high thermal conductivity make it useful for aerospace and military applications. It is also frequently used in X-ray equipment and particle physics. The origin of the name Beryllium comes from the Greek word "beryllos," meaning beryl. For more information on beryllium, including properties, safety data, research, and American Elements' catalog of beryllium products, visit the Beryllium Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H301-H315-H317-H319-H330-H335-H350i-H372
T+
49-25-26-36/37/38-43-48/23
53-45
DS1750000
UN 1567 6.1/PG 2
3
Skull and Crossbones-Acute Toxicity  Health Hazard      

CUSTOMERS FOR BERYLLIUM SPUTTERING TARGET HAVE ALSO LOOKED AT
Show Me MORE Forms of Beryllium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Beryllium

  • Identification of Multiple Public TCR Repertoires in Chronic Beryllium Disease. Bowerman NA, Falta MT, Mack DG, Wehrmann F, Crawford F, Mroz MM, Maier LA, Kappler JW, Fontenot AP. J Immunol. 2014.
  • Spectroscopic accuracy directly from quantum chemistry: Application to ground and excited states of beryllium dimer. Sharma S, Yanai T, Booth GH, Umrigar CJ, Chan GK. J Chem Phys. 2014 Mar.
  • Three New Alkaline Beryllium Borates LiBeBO3, Li6Be3B4O12, and Li8Be5B6O18 in the Ternary Phase Diagrams Li2O-BeO-B2O3. Wang S, Ye N, Zou G. Inorg Chem. 2014 Feb.
  • The interaction of beryllium with benzene and graphene: a comparative investigation based on DFT, MP2, CCSD(T), CAS-SCF and CAS-PT2. Fernandez N, Ferro Y, Carissan Y, Marchois J, Allouche A. Phys Chem Chem Phys. 2014.
  • ReBe2B5O11 (Re = Y, Gd): Rare-Earth Beryllium Borates as Deep-Ultraviolet Nonlinear-Optical Materials. Yan X, Luo S, Lin Z, Yao J, He R, Yue Y, Chen C. Inorg Chem. 2014
  • Dietary intake of barium, bismuth, chromium, lithium, and strontium in a Spanish population (Canary Islands, Spain). González-Weller D, Rubio C, Gutiérrez AJ, González GL, Mesa JM, Gironés CR, Ojeda AB, Hardisson A. Food Chem Toxicol. 2013
  • Professor Henri Bismuth: the past, present and future of hepatobiliary surgery. He VJ. Hepatobiliary Surg Nutr. 2013Three New Alkaline Beryllium Borates LiBeBO3, Li6Be3B4O12, and Li8Be5B6O18 in the Ternary Phase Diagrams Li2O-BeO-B2O3. Wang S, Ye N, Zou G. Inorg Chem. 2014 Feb.
  • Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes. Attia SM, Harisa GI, Hassan MH, Bakheet SA. Mutagenesis. 2013.
  • The interaction of beryllium with benzene and graphene: a comparative investigation based on DFT, MP2, CCSD(T), CAS-SCF and CAS-PT2. Fernandez N, Ferro Y, Carissan Y, Marchois J, Allouche A. Phys Chem Chem Phys. 2014.
  • Cooperativity in beryllium bonds. Alkorta I, Elguero J, Yáñez M, Mó O. Phys Chem Chem Phys. 2014 Feb.
  • ReBe2B5O11 (Re = Y, Gd): Rare-Earth Beryllium Borates as Deep-Ultraviolet Nonlinear-Optical Materials. Yan X, Luo S, Lin Z, Yao J, He R, Yue Y, Chen C. Inorg Chem. 2014 Jan.
  • Synthesis and Characterization of Heteroleptic 1-Tris(pyrazolyl)borate Beryllium Complexes. Naglav D, Bläser D, Wölper C, Schulz S. Inorg Chem. 2014 Jan.
  • Biological exposure metrics of beryllium-exposed dental technicians. Stark M, Lerman Y, Kapel A, Pardo A, Schwarz Y, Newman L, Maier L, Fireman E. Arch Environ Occup Health. 2014.
  • The Be K-edge in beryllium oxide and chalcogenides: soft x-ray absorption spectra from first-principles theory and experiment. Olovsson W, Weinhardt L, Fuchs O, Tanaka I, Puschnig P, Umbach E, Heske C, Draxl C. J Phys Condens Matter. 2013 Aug.
  • Beryllium-Cyclobutadiene Multidecker Inverse Sandwiches: Electronic Structure and Second-Hyperpolarizability. Hatua K, Nandi PK. J Phys Chem A. 2013 Oct 28.
  • Penta- and heteropentadienyl ligands coordinated to beryllium. Morales-Meza S, Sanchez-Castro ME, Sanchez M. J Mol Model. 2013 Oct 8.
  • Beryllium disease among construction trade workers at department of Energy nuclear sites. Welch LS, Ringen K, Dement J, Bingham E, Quinn P, Shorter J, Fisher M. Am J Ind Med. 2013.
  • The Be K-edge in beryllium oxide and chalcogenides: soft x-ray absorption spectra from first-principles theory and experiment. Olovsson W, Weinhardt L, Fuchs O, Tanaka I, Puschnig P, Umbach E, Heske C, Draxl C. J Phys Condens Matter. 2013.
  • Beryllium chemistry the safe way: a theoretical evaluation of low oxidation state beryllium compounds. Couchman SA, Holzmann N, Frenking G, Wilson DJ, Dutton JL. Dalton Trans. 2013.
  • Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes. Attia SM, Harisa GI, Hassan MH, Bakheet SA. Mutagenesis. 2013.