Skip to Page Content

Bismuth Ferrite

BiFeO3


Product Product Code Request Quote
(5N) 99.999% Bismuth Ferrite Powder BI-FEIT-05-P Request Quote
(5N) 99.999% Bismuth Ferrite Ingot BI-FEIT-05-I Request Quote
(5N) 99.999% Bismuth Ferrite Chunk BI-FEIT-05-CK Request Quote
(5N) 99.999% Bismuth Ferrite Sputtering Target BI-FEIT-05-ST Request Quote
(5N) 99.999% Bismuth Ferrite Lump BI-FEIT-05-L Request Quote

Ferrite StructureBismuth Ferrite is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Bismuth (Bi) atomic and molecular weight, atomic number and elemental symbol Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental Bismuth Bismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass. For more information on bismuth, including properties, safety data, research, and American Elements' catalog of bismuth products, visit the Bismuth element page.

Iron (Fe) atomic and molecular weight, atomic number and elemental symbolIron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2.Iron Bohr Model The iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Elemental Iron Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite. Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

BISMUTH FERRITE SYNONYMS
BFO, bismuth iron oxide

CUSTOMERS FOR BISMUTH FERRITE HAVE ALSO LOOKED AT
Bismuth Acetate Bismuth Foil Bismuth Nitrate Bismuth Oxide Pellets Bismuth Chloride
Bismuth Metal Bismuth Oxide Bismuth Sputtering Target Bismuth Sheet Bismuth Fluoride
Bismuth Pellets Bismuth Powder Bismuth Indium Alloy Bismuth Tin Alloy Bismuth Oxide Nanopowder
Show Me MORE Forms of Bismuth

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Bismuth

  • Thermal Decomposition of Bismuth Oxysulfide from Photoelectric Bi2O2S to Superconducting Bi4O4S3. Xian Zhang, Yufeng Liu, Ganghua Zhang, Yingqi Wang, Hui Zhang, and Fuqiang Huang. ACS Appl. Mater. Interfaces: February 3, 2015
  • Electrospun Bismuth Ferrite Nanofibers for Potential Applications in Ferroelectric Photovoltaic Devices. Linfeng Fei, Yongming Hu, Xing Li, Ruobing Song, Li Sun, Haitao Huang, Haoshuang Gu, Helen L. W. Chan, and Yu Wang. ACS Appl. Mater. Interfaces: January 26, 2015
  • Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate. Jason K. Cooper, Sheraz Gul, Francesca M. Toma, Le Chen, Yi-Sheng Liu, Jinghua Guo, Joel W. Ager, Junko Yano, and Ian D. Sharp. J. Phys. Chem. C: January 15, 2015
  • Reactivity of N,C,N-Chelated Antimony(III) and Bismuth(III) Chlorides with Lithium Reagents: Addition vs Substitution. Iva Vránová, Roman Jambor, Aleš R?ži?ka, Robert Jirásko, and Libor Dostál. Organometallics: January 6, 2015
  • Bismuth Sulfide Nanorods as a Precision Nanomedicine for in Vivo Multimodal Imaging-Guided Photothermal Therapy of Tumor. Jing Liu, Xiaopeng Zheng, Liang Yan, Liangjun Zhou, Gan Tian, Wenyan Yin, Liming Wang, Ying Liu, Zhongbo Hu, Zhanjun Gu, Chunying Chen, and Yuliang Zhao. ACS Nano: January 5, 2015
  • Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably Increased Visible-Light Absorption and Superior Photocatalytic Performance. Yongchao Huang, Haibo Li, Muhammad-Sadeeq Balogun, Wenyue Liu, Yexiang Tong, Xihong Lu, and Hongbing Ji. ACS Appl. Mater. Interfaces: December 1, 2014
  • Investigation of New Alkali Bismuth Oxosulfates and Oxophosphates with Original Topologies of Oxo-Centered Units. Minfeng Lü, Marie Colmont, Marielle Huvé, Isabelle De Waele, Christine Terryn, Almaz Aliev, and Olivier Mentré. Inorg. Chem.: October 31, 2014
  • Low-Lying Electronic States in Bismuth Trimer Bi3 As Revealed by Laser-Induced NIR Emission Spectroscopy in Solid Ne. Tomonari Wakabayashi, Yoriko Wada, Kyo Nakajima, Yusuke Morisawa, Susumu Kuma, Yuki Miyamoto, Noboru Sasao, Motohiko Yoshimura, Tohru Sato, and Kentarou Kawaguchi. J. Phys. Chem. A: October 30, 2014
  • Pulsed Laser Deposition of Epitaxial and Polycrystalline Bismuth Vanadate Thin Films. Alexander J. E. Rettie, Shirin Mozaffari, Martin D. McDaniel, Kristen N. Pearson, John G. Ekerdt, John T. Markert, and C. Buddie Mullins. J. Phys. Chem. C: October 29, 2014
  • Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories. Eric Davis, Ken Cheung, Steve Pauls, Jonathan Dick, Elijah Roth, Nicole Zalewski, Christopher Veldhuizen, and Joel Coeler. J. Chem. Educ.: 41935

Recent Research & Development for Ferritess

  • Electrospun Bismuth Ferrite Nanofibers for Potential Applications in Ferroelectric Photovoltaic Devices. Linfeng Fei, Yongming Hu, Xing Li, Ruobing Song, Li Sun, Haitao Huang, Haoshuang Gu, Helen L. W. Chan, and Yu Wang. ACS Appl. Mater. Interfaces: January 26, 2015
  • Superior Catalytic Effect of Nickel Ferrite Nanoparticles in Improving hydrogen storage Properties of MgH2. Qi Wan, Ping Li, Jiawei Shan, Fuqiang Zhai, Ziliang Li, and Xuanhui Qu. J. Phys. Chem. C: January 20, 2015
  • One-Step Facile Solvothermal Synthesis of Supercapacitor Material. Wang Zhang, Bo Quan, Chaedong Lee, Seung-Keun Park, Xinghe Li, Eunjin Choi, Guowang Diao, and Yuanzhe Piao. ACS Appl. Mater. Interfaces: January 13, 2015
  • Four High-Temperature Ferromagnets in the Hf–Fe–Sn System. Nicholas P. Calta, Melanie C. Francisco, Christos D. Malliakas, John A. Schlueter, and Mercouri G. Kanatzidis. Chem. Mater.: November 6, 2014
  • Strong and Moldable Cellulose Magnets with High Ferrite Nanoparticle Content. Sylvain Galland, Richard L. Andersson, Valter Ström, Richard T. Olsson, and Lars A. Berglund. ACS Appl. Mater. Interfaces: October 20, 2014
  • Structural Transition at 360 K in the CaFe5O7 Ferrite: Toward a New Charge Ordering Distribution. C. Delacotte, F. Hüe, Y. Bréard, S. Hébert, O. Pérez, V. Caignaert, J. M. Greneche, and D. Pelloquin. Inorg. Chem.: September 9, 2014
  • Feasibility of Combining Reverse Osmosis–Ferrite Process for Reclamation of Metal Plating Wastewater and Recovery of Heavy Metals. Seungjoon Chung, Seungjin Kim, Jong-Oh Kim, and Jinwook Chung. Ind. Eng. Chem. Res.: September 8, 2014
  • Magnetic and Thermodynamic Properties of Nanosized Zn Ferrite with Normal Spinal Structure Synthesized Using a Facile Method. Yunong Zhang, Quan Shi, Jacob Schliesser, Brian F. Woodfield, and Zhaodong Nan. Inorg. Chem.: September 5, 2014
  • Nickel Hydroxide /Cobalt–Ferrite Magnetic Nanocatalyst for Alcohol Oxidation. Pooja B. Bhat, Fawad Inam, and Badekai Ramachandra Bhat. ACS Comb. Sci.: July 30, 2014
  • Preparation of Highly Anisotropic Cobalt Ferrite/Silica Microellipsoids Using an External Magnetic Field. Sébastien Abramson, Vincent Dupuis, Sophie Neveu, Patricia Beaunier, and David Montero. Langmuir: July 16, 2014