Bismuth Lead Tin Cadmium Indium Alloy

Bi Pb Sn Cd In Metal Alloy


Product Product Code Order or Specifications
Bi-48% Pb-25.6% Sn-12.7% Cd-9.6% In-4% BIPB-SNCDIN-01-P.4IN Contact American Elements

Bismuth Lead Tin Cadmium Indium is one of numerous metal alloys sold by American Elements under the tradename AE Alloys™. Generally immediately available in most volumes, AE Alloys™ are available as bar, Ingot, ribbon, wire, shot, sheet, and foil. Ultra high purity and high purity forms also include metal powder, submicron powder and nanoscale, targets for thin film deposition, and pellets for chemical vapor deposition (CVD) and physical vapor deposition (PVD) applications. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Primary applications include bearing assembly, ballast, casting, step soldering, and radiation shielding.

Bismuth (Bi) atomic and molecular weight, atomic number and elemental symbol Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040(. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental Bismuth Bismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass. For more information on bismuth, including properties, safety data, research, and American Elements' catalog of bismuth products, visit the Bismuth Information Center.

Lead Bohr Model Lead (Pb) atomic and molecular weight, atomic number and elemental symbolLead (atomic symbol: Pb, atomic number: 82) is a Block P, Group 14, Period 6 element with an atomic radius of 207.2. The number of electrons in each of Lead's shells is [2, 8, 18, 32, 18, 4] and its electron configuration is [Xe] 4f14 5d10 6s2 6p2. The lead atom has a radius of 175 pm and a Van der Waals radius of 202 pm. In its elemental form, lead has a metallic gray appearance. Lead occurs naturally as a mixture of four stable isotopes: 204Pb (1.48%), 206Pb (23.6%), 207Pb (22.6%), and 208Pb (52.3%). Elemental Lead Lead is obtained mainly from galena (PbS) by a roasting process. Anglesite, cerussite, and minim are other common lead containing minerals. Lead does occur as a free element in nature, but it is rare. It is a dense, soft metal that is very resistant to corrosion and poorly conductive compared to other metals. Its density and low melting point make it useful in applications such as electrolysis and industrual materials. For more information on lead, including properties, safety data, research, and American Elements' catalog of lead products, visit the Lead Information Center.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin Information Center.

Cadmium (Cd) atomic and molecular weight, atomic number and elemental symbolCadmium (atomic symbol: Cd, atomic number: 48) is a Block D, Group 12, Period 5 element with an atomic weight of 112.411. Cadmium Bohr ModelThe number of electrons in each of Cadmium's shells is 2, 8, 18, 18, 2 and its electron configuration is [Kr] 4d10 5s2. The cadmium atom has a radius of 151 pm and a Van der Waals radius of 230 pm.Cadmium was discovered and first isolated by Karl Samuel Leberecht Hermann and Friedrich Stromeyer in 1817. In its elemental form, cadmium has a silvery bluish gray metallic appearance. Cadmium makes up about 0.1 ppm of the earth's crust. Elemental CadmiumNo significant deposits of cadmium containing ores are known, however, it is sometimes found in its metallic form. It is a common impurity in zinc ores and is isolated during the production of zinc. Cadmium is a key component in battery production and particular pigments and coatings due to its distinct yellow color. Cadmium oxide is used in phosphors for television picture tubes. The name Cadmium originates from the Latin word 'cadmia' and the Greek word 'kadmeia'. For more information on cadmium, including properties, safety data, research, and American Elements' catalog of cadmium products, visit the Cadmium Information Center.

Indium (In) atomic and molecular weight, atomic number and elemental symbolIndium (atomic symbol: In, atomic number: 49) is a Block P, Group 13, Period 5 element with an atomic weight of 114.818. The number of electrons in each of indium's shells is [2, 8, 18, 18, 3] and its electron configuration is [Kr] 4d10 5s2 5p1. The indium atom has a radius of 162.6 pm and a Van der Waals radius of 193 pm. Indium was discovered by Ferdinand Reich and Hieronymous Theodor Richter in 1863. Indium Bohr Model It is a relatively rare, extremely soft metal is a lustrous silvery Elemental Indium gray and is both malleable and easily fusible. It has similar chemical properties to gallium such as a low melting point and the ability to wet glass. Fields such as optics and microelectronics that utilize semiconductor technology have wide uses for indium, especially in the form of Indiun Tin Oxide (ITO). Thin films of Copper Indium Gallium Selenide (CIGS) are used in high-performing solar cells. Indium's name is derived from the Latin word indicum meaning violet. For more information on indium, including properties, safety data, research, and American Elements' catalog of indium products, visit the Indium Information Center.



CUSTOMERS FOR BISMUTH LEAD TIN CADMIUM INDIUM ALLOY HAVE ALSO LOOKED AT
Show Me MORE Forms of Bismuth

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Bismuth

  • Jorge Omar Gil Posada, Peter J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, Journal of Power Sources, Volume 268, 5 December 2014
  • Xiaohua Zhang, Wei Ren, Feng Xin, Peng Shi, Structures and electric properties of cubic bismuth based pyrochlore thin films grown by pulsed laser deposition, Journal of Alloys and Compounds, Volume 614, 25 November 2014
  • Masayuki Takashiri, Kazuo Imai, Masato Uyama, Harutoshi Hagino, Saburo Tanaka, Koji Miyazaki, Yoshitake Nishi, Effects of homogeneous irradiation of electron beam on crystal growth and thermoelectric properties of nanocrystalline bismuth selenium telluride thin films, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • Lingxia Li, Dan Xu, Shihui Yu, Helei Dong, Yuxin Jin, Haoran Zheng, Effect of substrate on the dielectric properties of bismuth magnesium niobate thin films prepared by RF magnetron sputtering, Vacuum, Volume 109, November 2014
  • Qing Liao, Yanjie Wang, Yan Chen, Yanying Wei, Haihui Wang, Novel bifunctional tantalum and bismuth co-doped perovskite BaBi0.05Co0.8Ta0.15O3-d with high oxygen permeation, Journal of Membrane Science, Volume 468, 15 October 2014
  • Dong Hoon Son, Bok Hyeon Kim, Seung Ho Lee, Seongjae Boo, Won-Taek Han, Ultra-broadband near-infrared emission in bismuth borosilicate glasses incorporated with Er3 +, Tm3 +, and Yb3 + ions, Journal of Non-Crystalline Solids, Volume 402, 15 October 2014
  • Xijia He, Jianbei Qiu, Yong Yang, Dacheng Zhou, Xuhui Xu, Shengxian Wei, Abnormal near-infrared luminescence property of bismuth doped calcium germanate glasses, Journal of Non-Crystalline Solids, Volume 402, 15 October 2014
  • ZhangSheng Liu, HuaShen Ran, JiNan Niu, PeiZhong Feng, YaBo Zhu, One-pot synthesis of Bismuth Oxyhalide/Oxygen-rich bismuth oxyhalide Heterojunction and its photocatalytic activity, Journal of Colloid and Interface Science, Volume 431, 1 October 2014
  • Xue Lin, Zongxiao Liu, Xiaoyu Guo, Chunbo Liu, Hongju Zhai, Qingwei Wang, Limin Chang, Controllable synthesis and photocatalytic activity of spherical, flower-like and nanofibrous bismuth tungstates, Materials Science and Engineering: B, Volume 188, October 2014
  • Gowrish K. Rao, Doping ZnS and ZnSe thin films with bismuth: A comparison between sandwiching technique and nano-particle incorporation, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • R. Wongmaneerung, J. Padchasri, R. Tipakontitikul, T.H. Loan, P. Jantaratana, R. Yimnirun, S. Ananta, Phase formation, dielectric and magnetic properties of bismuth ferrite–lead magnesium niobate multiferroic composites, Journal of Alloys and Compounds, Volume 608, 25 September 2014
  • Arda Aytimur, Ibrahim Uslu, Senol Durmusoglu, Ahmet Akdemir, Polymer-derived yttria stabilized bismuth oxide nanocrystalline ceramics, Ceramics International, Volume 40, Issue 8, Part B, September 2014
  • C.M. Bedoya-Hincapié, E. Restrepo-Parra, J.J. Olaya-Flórez, J.E. Alfonso, F.J. Flores-Ruiz, F.J. Espinoza-Beltrán, Ferroelectric behavior of bismuth titanate thin films grown via magnetron sputtering, Ceramics International, Volume 40, Issue 8, Part A, September 2014
  • Lingxia Li, Dan Xu, Shihui Yu, Helei Dong, Yuxin Jin, Effect of thickness on the dielectric properties of bismuth magnesium niobium thin films deposited by rf magnetron sputtering, Ceramics International, Volume 40, Issue 8, Part A, September 2014
  • R.N.P. Choudhary, C. Behera, Piyush R. Das, R.R. Das, Development of bismuth-based electronic materials from Indian red mud, Ceramics International, Volume 40, Issue 8, Part A, September 2014
  • M. Zannen, M. Dietze, H. Khemakhem, A. Kabadou, M. Es-Souni, The erbium?s amphoteric behavior effects on sodium bismuth titanate properties, Ceramics International, Volume 40, Issue 8, Part B, September 2014
  • David A. McKeown, Hao Gan, Ian L. Pegg, Raman and X-ray absorption spectroscopy studies of chromium–phosphorus interactions in high-bismuth high-level waste glasses, Journal of Nuclear Materials, Volume 452, Issues 1–3, September 2014
  • Mohsen K. Keshavarz, Dimitri Vasilevskiy, Remo A. Masut, Sylvain Turenne, Synthesis and characterization of bismuth telluride-based thermoelectric nanocomposites containing MoS2 nano-inclusions, Materials Characterization, Volume 95, September 2014
  • P. Srinivasa Rao, P. Ramesh Babu, R. Vijay, T. Narendrudu, N. Veeraiah, D. Krishna Rao, Spectroscopic and dielectric response of zinc bismuth phosphate glasses as a function of chromium content, Materials Research Bulletin, Volume 57, September 2014
  • Saihua Jiang, Zhou Gui, Yongqian Shi, Keqing Zhou, Bihe Yuan, Chenlu Bao, Siuming Lo, Yuan Hu, Bismuth subcarbonate nanoplates for thermal stability, fire retardancy and smoke suppression applications in polymers: A new strategy, Polymer Degradation and Stability, Volume 107, September 2014

Recent Research & Development for Lead

  • Baoxiang He, Hua Wang, Xie He, Vibration test methods and their experimental research on the performance of the lead-acid battery, Journal of Power Sources, Volume 268, 5 December 2014
  • Yue Li, Zheng Shen, Asok Ray, Christopher D. Rahn, Real-time estimation of lead-acid battery parameters: A dynamic data-driven approach, Journal of Power Sources, Volume 268, 5 December 2014
  • Olawale L. Osifeko, Tebello Nyokong, Applications of lead phthalocyanines embedded in electrospun fibers for the photoinactivation of Escherichia coli in water, Dyes and Pigments, Volume 111, December 2014
  • A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, M. Ragab, Properties enhancement of low Ag-content Sn–Ag–Cu lead-free solders containing small amount of Zn, Journal of Alloys and Compounds, Volume 614, 25 November 2014
  • Xing Liu, Min Zhu, Zhihui Chen, Bijun Fang, Jianning Ding, Xiangyong Zhao, Haiqing Xu, Haosu Luo, Structure and electrical properties of Li-doped BaTiO3–CaTiO3–BaZrO3 lead-free ceramics prepared by citrate method, Journal of Alloys and Compounds, Volume 613, 15 November 2014
  • Matthew Sorge, Thomas Bean, Travis Woodland, John Canning, I. Frank Cheng, Dean B. Edwards, Investigating the use of porous, hollow glass microspheres in positive lead acid battery plates, Journal of Power Sources, Volume 266, 15 November 2014
  • Pengran Gao, Yi Liu, Weixin Lv, Rui Zhang, Wei Liu, Xianfu Bu, Guanghua Li, Lixu Lei, Methanothermal reduction of mixtures of PbSO4 and PbO2 to synthesize ultrafine a-PbO powders for lead acid batteries, Journal of Power Sources, Volume 265, 1 November 2014
  • M.L.V. Mahesh, V.V. Bhanu Prasad, A.R. James, Enhanced dielectric and ferroelectric properties of lead-free Ba(Zr0.15Ti0.85)O3 ceramics compacted by cold isostatic pressing, Journal of Alloys and Compounds, Volume 611, 25 October 2014
  • Yuanyu Wang, Qilong Zhang, New K0.48Na0.52NbO3–Bi(Zn0.5Zr0.5)O3 lead-free ceramics: Microstructure and piezoelectricity, Journal of Alloys and Compounds, Volume 611, 25 October 2014
  • S.I. Sadovnikov, A.I. Gusev, Effect of particle size on the thermal expansion of nanostructured lead sulfide films, Journal of Alloys and Compounds, Volume 610, 15 October 2014
  • L. Rus, S. Rada, V. Rednic, E. Culea, M. Rada, A. Bot, N. Aldea, T. Rusu, Structural and optical properties of the lead based glasses containing iron (III) oxide, Journal of Non-Crystalline Solids, Volume 402, 15 October 2014
  • A. Oury, A. Kirchev, Y. Bultel, Cycling of soluble lead flow cells comprising a honeycomb-shaped positive electrode, Journal of Power Sources, Volume 264, 15 October 2014
  • Bo Wang, Shifang Xiao, Xianglai Gan, Huiqiu Deng, Xiaofan Li, Xuegui Sun, Wangyu Hu, Diffusion properties of liquid lithium–lead alloys from atomistic simulation, Computational Materials Science, Volume 93, October 2014
  • A.F. Zatsepin, H.-J. Fitting, E.A. Buntov, V.A. Pustovarov, B. Schmidt, Defects and localized states in silica layers implanted with lead ions, Journal of Luminescence, Volume 154, October 2014
  • Admira Bosnjakovic, Marek Danilczuk, Shulamith Schlick, Pa N. Xiong, Gregory M. Haugen, Steven J. Hamrock, An attempt to generate anion exchange membranes by amination of the perfluorinated 3M precursor leads to the hydrolysis of the precursor, Journal of Membrane Science, Volume 467, 1 October 2014
  • Yi Liu, Pengran Gao, Xianfu Bu, Guizhi Kuang, Wei Liu, Lixu Lei, Nanocrosses of lead sulphate as the negative active material of lead acid batteries, Journal of Power Sources, Volume 263, 1 October 2014
  • Jun Gou, Anson Lee, Jan Pyko, Modeling of the cranking and charging processes of conventional valve regulated lead acid (VRLA) batteries in micro-hybrid applications, Journal of Power Sources, Volume 263, 1 October 2014
  • S. Mostafa Hosseinpour-Mashkani, Majid Ramezani, Morteza Vatanparast, Synthesis and characterization of lead selenide nanostructure through simple sonochemical method in the presence of novel precursor, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • Rajkumar Nirmala, Kyung Soo Jeon, Rangaswamy Navamathavan, Hak Yong Kim, Soo-Jin Park, Synthesis and characterization of electrospun cadmium sulfide- and lead sulfide-blended poly(vinyl acetate) composite nanofibers, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • Srimala Sreekantan, Syazwani Mohd. Zaki, Chin Wei Lai, Teoh Wah Tzu, Copper-incorporated titania nanotubes for effective lead ion removal, Materials Science in Semiconductor Processing, Volume 26, October 2014

Recent Research & Development for Tin

  • Nguyen Dang Nam, Mahesh Vaka, Nguyen Tran Hung, Corrosion behavior of TiN, TiAlN, TiAlSiN-coated 316L stainless steel in simulated proton exchange membrane fuel cell environment, Journal of Power Sources, Volume 268, 5 December 2014
  • M.A. Deyab, Hydrogen generation by tin corrosion in lactic acid solution promoted by sodium perchlorate, Journal of Power Sources, Volume 268, 5 December 2014
  • Feng Gu, Wenjuan Huang, Shufen Wang, Xing Cheng, Yanjie Hu, Chunzhong Li, Improved photoelectric conversion efficiency from titanium oxide-coupled tin oxide nanoparticles formed in flame, Journal of Power Sources, Volume 268, 5 December 2014
  • C. Tholander, B. Alling, F. Tasnádi, J.E. Greene, L. Hultman, Effect of Al substitution on Ti, Al, and N adatom dynamics on TiN(001), (011), and (111) surfaces, Surface Science, Volume 630, December 2014
  • A. Elrefaey, J. Janczak-Rusch, M.M. Koebel, Direct glass-to-metal joining by simultaneous anodic bonding and soldering with activated liquid tin solder, Journal of Materials Processing Technology, Volume 214, Issue 11, November 2014
  • Xiang Lei Shi, Jian Tao Wang, Jian Nong Wang, Roughness improvement of fluorine-doped tin oxide thin films by using different alcohol solvents, Journal of Alloys and Compounds, Volume 611, 25 October 2014
  • K. Vijayarangamuthu, Shyama Rath, Nanoparticle size, oxidation state, and sensing response of tin oxide nanopowders using Raman spectroscopy, Journal of Alloys and Compounds, Volume 610, 15 October 2014
  • Caitian Gao, Xiaodong Li, Xupeng Zhu, Lulu Chen, Zemin Zhang, Youqing Wang, Zhenxing Zhang, Huigao Duan, Erqing Xie, Branched hierarchical photoanode of titanium dioxide nanoneedles on tin dioxide nanofiber network for high performance dye-sensitized solar cells, Journal of Power Sources, Volume 264, 15 October 2014
  • Shu Wei, Dong-Dong Han, Li Guo, Yinyan He, Hong Ding, Yong-Lai Zhang, Feng-Shou Xiao, In situ immobilization of tin dioxide nanoparticles by nanoporous polymers scaffold toward monolithic humidity sensing devices, Journal of Colloid and Interface Science, Volume 431, 1 October 2014
  • G. Kilibarda, S. Schlabach, V. Winkler, M. Bruns, T. Hanemann, D.V. Szabó, Electrochemical performance of tin-based nano-composite electrodes using a vinylene carbonate-containing electrolyte for Li-ion cells, Journal of Power Sources, Volume 263, 1 October 2014
  • Kehua Dai, Hui Zhao, Zhihui Wang, Xiangyun Song, Vince Battaglia, Gao Liu, Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries, Journal of Power Sources, Volume 263, 1 October 2014
  • Atasheh Soleimani-Gorgani, Ehsan Bakhshandeh, Farhood Najafi, Effect of dispersant agents on morphology and optical–electrical properties of nano indium tin oxide ink-jet ink, Journal of the European Ceramic Society, Volume 34, Issue 12, October 2014
  • Bhupendra Singh, Ji-Hye Kim, Jun-Young Park, Sun-Ju Song, Ionic conductivity of Mn2+ doped dense tin pyrophosphate electrolytes synthesized by a new co-precipitation method, Journal of the European Ceramic Society, Volume 34, Issue 12, October 2014
  • Shihyun Ahn, Anh Huy Tuan Le, Sunbo Kim, Cheolmin Park, Chonghoon Shin, Youn-Jung Lee, Jaehyeong Lee, Chaehwan Jeong, Vinh Ai Dao, Junsin Yi, The effects of orientation changes in indium tin oxide films on performance of crystalline silicon solar cell with shallow-emitter, Materials Letters, Volume 132, 1 October 2014
  • Faheem K. Butt, Chuanbao Cao, Tariq Mahmood, Faryal Idrees, Muhammad Tahir, Waheed S. Khan, Zulfiqar Ali, Muhammad Rizwan, M. Tanveer, Sajad Hussain, Imran Aslam, Dapeng Yu, Metal-catalyzed synthesis of ultralong tin dioxide nanobelts: Electrical and optical properties with oxygen vacancy-related orange emission, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • Zhou Xu, Peng Chen, Zhenlong Wu, Feng Xu, Guofeng Yang, Bin Liu, Chongbin Tan, Lin Zhang, Rong Zhang, Youdou Zheng, Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • L.P. Chikhale, J.Y. Patil, A.V. Rajgure, R.C. Pawar, I.S. Mulla, S.S. Suryavanshi, Synthesis, characterization and LPG response of Pd loaded Fe doped tin oxide thick films, Journal of Alloys and Compounds, Volume 608, 25 September 2014
  • Monika Madej, The effect of TiN and CrN interlayers on the tribological behavior of DLC coatings, Wear, Volume 317, Issues 1–2, 15 September 2014
  • Bhim Singh Rathore, Deepak Pathania, Styrene–tin (IV) phosphate nanocomposite for photocatalytic degradation of organic dye in presence of visible light, Journal of Alloys and Compounds, Volume 606, 5 September 2014
  • Brian Cardineau, Ryan Del Re, Miles Marnell, Hashim Al-Mashat, Michaela Vockenhuber, Yasin Ekinci, Chandra Sarma, Daniel A. Freedman, Robert L. Brainard, Photolithographic properties of tin-oxo clusters using extreme ultraviolet light (13.5 nm), Microelectronic Engineering, Volume 127, 5 September 2014

Recent Research & Development for Cadmium

  • Jingfu Zhang, Jingen Pan, Lianyi Shao, Jie Shu, Mingjiong Zhou, Jianguo Pan, Micro-sized cadmium tungstate as a high-performance anode material for lithium-ion batteries, Journal of Alloys and Compounds, Volume 614, 25 November 2014
  • Bakhtiar Ul Haq, Rashid Ahmed, Souraya Goumri-Said, DFT characterization of cadmium doped zinc oxide for photovoltaic and solar cell applications, Solar Energy Materials and Solar Cells, Volume 130, November 2014
  • Prasanta Kumar Bhaumik, Sumit Roy, Klaus Harms, Shouvik Chattopadhyay, Formation of novel cadmium(II) tetrazolato complexes with Schiff bases as co-ligands via in situ [3+2] cyclo-addition, Polyhedron, Volume 81, 15 October 2014
  • Ankita Solanki, Sujit Baran Kumar, Syntheses and structural studies of cobalt(II), nickel(II), zinc(II) and cadmium(II) selenocyanate complexes with a tetradentate N4-donor ligand, Polyhedron, Volume 81, 15 October 2014
  • Ali Badawi, N. Al-Hosiny, S. Abdallah, Amar Merazga, H. Talaat, Single wall carbon nanotube/titania nanocomposite photoanodes enhance the photovoltaic performance of cadmium selenide quantum dot-sensitized solar cells, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • Natalia Maticiuc, Jaan Hiie, Valdek Mikli, Tamara Potlog, Vello Valdna, Structural and optical properties of cadmium sulfide thin films modified by hydrogen annealing, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • Y.J. Zhai, J.H. Li, X. Fang, X.Y. Chen, F. Fang, X.Y. Chu, Z.P. Wei, X.H. Wang, Preparation of cadmium-doped zinc oxide nanoflowers with enhanced photocatalytic activity, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • A.M. El Sayed, Ali Ibrahim, Structural and optical characterizations of spin coated cobalt-doped cadmium oxide nanostructured thin films, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • A.A. Dakhel, M. Bououdina, Development of transparent conducting copper and iron co-doped cadmium oxide films: Effect of annealing in hydrogen atmosphere, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • Rajkumar Nirmala, Kyung Soo Jeon, Rangaswamy Navamathavan, Hak Yong Kim, Soo-Jin Park, Synthesis and characterization of electrospun cadmium sulfide- and lead sulfide-blended poly(vinyl acetate) composite nanofibers, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • Nancy Mahendru, Ruchika Bagga, Kuldeep Sharma, G.P. Kothiyal, Mauro Falconieri, Gopi Sharma, On the influence of lead and cadmium fluoride content on thermal, optical and structural properties of oxyfluoride glass, Journal of Alloys and Compounds, Volume 608, 25 September 2014
  • Alexander Rabkin, Yuval Golan, Time, illumination and solvent dependent stability of cadmium sulfide nanoparticle suspensions, Journal of Colloid and Interface Science, Volume 430, 15 September 2014
  • W.S. Wang, L. Zhen, W.Z. Shao, Z.L. Chen, Sodium chloride induced formation of square-shaped cadmium molybdate nanoplates, Materials Letters, Volume 131, 15 September 2014
  • Barbara Skolyszewska-Kühberger, Thomas L. Reichmann, Herbert Ipser, Phase equilibria in the neodymium–cadmium binary system, Journal of Alloys and Compounds, Volume 606, 5 September 2014
  • Kai Chen, Yan-Shang Kang, Li Luo, Yue Zhao, Peng Wang, Qing Liu, Yi Lu, Wei-Yin Sun, Cadmium(II) and cobalt(II) coordination polymers constructed from 4,4'-di(1H-imidazol-4-yl)biphenyl and varied multicarboxylate ligands: Synthesis, structure and property, Polyhedron, Volume 79, 5 September 2014
  • Bhaskar Nath, Jubaraj B. Baruah, Cadmium (II) dicarboxylate complexes of 2,2'-[2-fluoro-phenylmethylidenebis(3,5-methyl-2-phenyleneoxy)]diacetic acid formed in different solvents, Polyhedron, Volume 79, 5 September 2014
  • Harpreet Kaur, Jashanpreet Singh, B.S. Randhawa, Essence of superparamagnetism in cadmium ferrite induced by various organic fuels via novel solution combustion method, Ceramics International, Volume 40, Issue 8, Part A, September 2014
  • Nicolai Burzlaff, A. Sigel, H. Sigel, R.K.O. Sigel (Eds.), “Cadmium: From Toxicity to Essentiality”, Metal Ions in Life Sciences (ISSN: 1559-0836), vol. 11, 2013, Springer S+B Media, Dordrecht, The Netherlands, 560 pp., ISBN: 978-94-007-5178-1, , Hardback, Price: €181.85, also available as e-book (€142.79)., Inorganica Chimica Acta, Volume 421, 1 September 2014
  • Guangrui Yang, Dezhi Qin, Xian Du, Li Zhang, Ganqing Zhao, Qiuxia Zhang, Jiulin Wu, Aqueous synthesis and characterization of bovine hemoglobin-conjugated cadmium sulfide nanocrystals, Journal of Alloys and Compounds, Volume 604, 15 August 2014
  • Mayeen Uddin Khandaker, Kwangsoo Kim, Manwoo Lee, Guinyun Kim, Investigation of activation cross-sections of alpha-induced nuclear reactions on natural cadmium, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 333, 15 August 2014

Recent Research & Development for Indium

    • Liquid-Phase Gallium-Indium Alloy Electronics with Microcontact Printing. Tabatabai A, Fassler A, Usiak C, Majidi C. Langmuir. 2013 May 9.
    • Orthorhombic In2 O3 : A Metastable Polymorph of Indium Sesquioxide. Bekheet MF, Schwarz MR, Lauterbach S, Kleebe HJ, Kroll P, Riedel R, Gurlo A. Angew Chem Int Ed Engl. 2013 May 6. doi: 10.1002/anie.201300644.
    • Indium tin oxide nanowires grown by one-step thermal evaporation-deposition process at low temperature. Dong H, Zhang X, Niu Z, Zhao D, Li J, Cai L, Zhou W, Xie S. J Nanosci Nanotechnol. 2013 Feb;13(2):1300-3.
    • Stoichiometry dependent electron transport and gas sensing properties of indium oxide nanowires. Gali P, Sapkota G, Syllaios AJ, Littler C, Philipose U. Nanotechnology. 2013 Jun 7;24(22):225704. doi: 10.1088/0957-4484/24/22/225704.
    • Three-Dimensional Self-Assembly of Chalcopyrite Copper Indium Diselenide Nanocrystals into Oriented Films. Reifsnyder DC, Ye X, Gordon TR, Song C, Murray CB. ACS Nano. 2013 May 8.
    • Development of a reagentless electrochemiluminescent electrode for flow injection analysis using copolymerised luminol/aniline on nano-TiO2 functionalised indium-tin oxide glass. Liu C, Wei X, Tu Y. Talanta. 2013 Jul 15;111C:156-62. doi: 10.1016/j.talanta.2013.02.068.
    • Electrical impedance characterization of adipose tissue-derived stem cells cultured on indium tin oxide electrodes. Jun HS, Choi W, Kim JY, Cho S. J Biomed Nanotechnol. 2013 Apr;9(4):699-702.
    • Electrooxidative grafting of amine-terminated dendrimers encapsulating nanoparticles for spatially controlled surface functionalization of indium tin oxide. Lee SB, Ju Y, Kim Y, Koo CM, Kim J. Chem Commun (Camb). 2013 Apr 24.
    • Reply to "KL-6 is not ineffective biomarker of indium lung" by Nakano et al. (Letter to the Editor). Chen HL. Int Arch Occup Environ Health. 2013 Apr 23.
    • KL-6 is not ineffective biomarker of indium lung. Nakano M, Omae K, Tanaka A, Hirata M. Int Arch Occup Environ Health. 2013 Apr 23.
    • Molecular Indium(III) Phosphonates Possessing Ring and Cage Structures. Synthesis and Structural Characterization of [In2(t-BuPO3H)4(phen)2Cl2] and [In3(C5H9PO3)2(C5H9PO3H)4(phen)3]·NO3·3.5H2O. Chandrasekhar V, Goura J, Duthie A. Inorg Chem. 2013 May 6;52(9):4819-24. doi: 10.1021/ic3022485.
    • Chelant-induced reclamation of indium from the spent liquid crystal display panels with the aid of microwave irradiation. Hasegawa H, Rahman IM, Egawa Y, Sawai H, Begum ZA, Maki T, Mizutani S. J Hazard Mater. 2013 Mar 22;254-255C:10-17. doi: 10.1016/j.jhazmat.2013.03.028.
    • Impact of preferential indium nucleation on electrical conductivity of vapor-liquid-solid grown indium-tin oxide nanowires. Meng G, Yanagida T, Nagashima K, Yoshida H, Kanai M, Klamchuen A, Zhuge F, He Y, Rahong S, Fang X, Takeda S, Kawai T. J Am Chem Soc. 2013 May 8;135(18):7033-8. doi: 10.1021/ja401926u.
    • Indium/TFA-Catalyzed Synthesis of Tetracyclic [6,5,5,6] Indole Ring, via a Tandem Cycloannulation of ß-Oxodithioester with Tryptamine. Singh TP, Bhattarcharya S, Singh OM. Org Lett. 2013 Apr 19;15(8):1974-7. doi: 10.1021/ol400644m.
    • Ultrafast photoinduced enhancement of nonlinear optical response in 15-atom gold clusters on indium tin oxide conducting film. Kumar S, Shibu ES, Pradeep T, Sood AK. Opt Express. 2013 Apr 8;21(7):8483-92. doi: 10.1364/OE.21.008483.
    • Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1. Guo D, Zhuo M, Zhang X, Xu C, Jiang J, Gao F, Wan Q, Li Q, Wang T. Anal Chim Acta. 2013 Apr 22;773:83-8. doi: 10.1016/j.aca.2013.02.019.
    • Synthesis of hollow gold nanoparticles on the surface of indium tin oxide glass and their application for plasmonic biosensor. Hu T, Lin Y, Yan J, Di J. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Mar 14;110C:72-77. doi: 10.1016/j.saa.2013.03.024.
    • Unusual tilted carbene coordination in carbene complexes of gallium(i) and indium(i). Higelin A, Keller S, Göhringer C, Jones C, Krossing I. Angew Chem Int Ed Engl. 2013 Apr 26;52(18):4941-4. doi: 10.1002/anie.201209757.
    • Molecular mechanism of monodisperse colloidal tin-doped indium oxide nanocrystals by a hot-injection approach. Jin Y, Yi Q, Ren Y, Wang X, Ye Z. Nanoscale Res Lett. 2013 Apr 2;8(1):153. doi: 10.1186/1556-276X-8-153.
    • Effect of non-vacuum thermal annealing on high indium content InGaN films deposited by pulsed laser deposition. Wang TY, Ou SL, Shen KC, Wuu DS. Opt Express. 2013 Mar 25;21(6):7337-42. doi: 10.1364/OE.21.007337.