Bismuth Selenide

Bi2Se3
CAS 12068-69-8


Product Product Code Order or Specifications
(5N) 99.999% Bismuth Selenide Powder BI-SE-05-P Contact American Elements
(5N) 99.999% Bismuth Selenide Ingot BI-SE-05-I Contact American Elements
(5N) 99.999% Bismuth Selenide Chunk BI-SE-05-CK Contact American Elements
(5N) 99.999% Bismuth Selenide Lump BI-SE-05-L Contact American Elements
(5N) 99.999% Bismuth Selenide Sputtering Target BI-SE-05-ST Contact American Elements
(5N) 99.999% Bismuth Selenide Wafer BI-SE-05-WSX Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Bi2Se3 12068-69-8 24864986 6379269 MFCD00014200 235-104-7 selenium; selenoxobismuth N/A [BiH3+3].[BiH3+3].[Se-2].[Se-2].[Se-2] InChI=1S/2Bi.3
Se/q2*+3;3*-2
FBGGJHZVZAAUKJ-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
Bi2Se3 654.84 Dull Grey 706 °C
(1303 °F)
N/A 6.82 g/cm3 657.710331 657.710388 Da 0 Safety Data Sheet

Selenide IonBismuth Selenide is a crystalline solid used as a semiconductor and in photo optic applications. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Bismuth (Bi) atomic and molecular weight, atomic number and elemental symbol Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040(. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental Bismuth Bismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass. For more information on bismuth, including properties, safety data, research, and American Elements' catalog of bismuth products, visit the Bismuth Information Center.

Selenium Bohr ModelSelenide(Se) atomic and molecular weight, atomic number and elemental symbolSelenium (atomic symbol: Se, atomic number: 34) is a Block P, Group 16, Period 4 element with an atomic radius of 78.96. The number of electrons in each of Selenium's shells is 2, 8, 18, 6 and its electron configuration is [Ar] 3d10 4s2 4p4. The selenium atom has a radius of 120 pm and a Van der Waals radius of 190 pm. Selenium is a non-metal with several allotropes: a black, vitreous form with an irregular crystal structure; three red-colored forms with monoclinic crystal structures; and a gray form with a hexagonal crystal structure, the most stable and dense form of the element. Elemental Selenium One of the mose common uses for selenium is in glass production; the red tint that it lends to glass neutralizes green or yellow tints from impurities in the glass materials. Selenium was discovered and first isolated by Jöns Jakob Berzelius and Johann Gottlieb Gahn in 1817. The origin of the name Selenium comes from the Greek word "Selênê," meaning moon. For more information on selenium, including properties, safety data, research, and American Elements' catalog of selenium products, visit the Selenium Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H301-H331-H373-H410
N/A
N/A
N/A
N/A
N/A
3
Skull and Crossbones-Acute Toxicity  Health Hazard Environment-Hazardous to the aquatic environment    

BISMUTH SELENIDE SYNONYMS
Bismuth(3+) selenide (2:3), guanajuatite, selenium; selenoxobismuth, Bismuth(III) selenide, selanylidenebismuth; selenium, dibismuth selenium(2-), Dibismuth triselenide, selenium; selenoxobismuth

CUSTOMERS FOR BISMUTH SELENIDE HAVE ALSO LOOKED AT
Show Me MORE Forms of Bismuth

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Bismuth

  • Wei Cai, Chunlin Fu, Rongli Gao, Weihai Jiang, Xiaoling Deng, Gang Chen, Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Wislei R. Osório, Ausdinir D. Bortolozo, Leandro C. Peixoto, Amauri Garcia, Mechanical performance and microstructure array of as-cast lead–silver and lead–bismuth alloys, Journal of Power Sources, Volume 271, 20 December 2014
  • Phuoc Huu Le, Chien-Neng Liao, Chih Wei Luo, Jihperng Leu, Thermoelectric properties of nanostructured bismuth–telluride thin films grown using pulsed laser deposition, Journal of Alloys and Compounds, Volume 615, 5 December 2014,
  • Guangzhi Dong, Huiqing Fan, Pengrong Ren, Xiao Liu, Hole conduction and nonlinear current–voltage behavior in multiferroic lanthanum-substituted bismuth ferrite, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Jorge Omar Gil Posada, Peter J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, Journal of Power Sources, Volume 268, 5 December 2014
  • Bing Han, Jie Zhang, Pengju Li, Jianliang Li, Yang Bian, Hengzhen Shi, A novel orange emitting bismuth molybdate based phosphor, Ceramics International, Volume 40, Issue 10, Part B, December 2014
  • Yunhui Yan, Zhaoxian Zhou, Xiaohua Zhao, Jianguo Zhou, A controlled anion exchange strategy to synthesize core-shell β-bismuth oxide/bismuth sulfide hollow heterostructures with enhanced visible-light photocatalytic activity, Journal of Colloid and Interface Science, Volume 435, 1 December 2014
  • Chao Wang, Gehong Zhang, Chao Zhang, Miaomiao Wu, Ming Yan, Weiqiang Fan, Weidong Shi, A facile one-step solvothermal synthesis of bismuth phosphate–graphene nanocomposites with enhanced photocatalytic activity, Journal of Colloid and Interface Science, Volume 435, 1 December 2014
  • K. Swapna, Sk. Mahamuda, A. Srinivasa Rao, T. Sasikala, P. Packiyaraj, L. Rama Moorthy, G. Vijaya Prakash, Luminescence characterization of Eu3+ doped Zinc Alumino Bismuth Borate glasses for visible red emission applications, Journal of Luminescence, Volume 156, December 2014
  • K. Swapna, Sk. Mahamuda, A. Srinivasa Rao, M. Jayasimhadri, Suman Shakya, G. Vijaya Prakash, Tb3+ doped Zinc Alumino Bismuth Borate glasses for green emitting luminescent devices, Journal of Luminescence, Volume 156, December 2014

Recent Research & Development for Selenides

  • Pinjiang Li, Hongyuan Cai, Qunwei Tang, Benlin He, Lin Lin, Counter electrodes from binary ruthenium selenide alloys for dye-sensitized solar cells, Journal of Power Sources, Volume 271, 20 December 2014
  • Kaiyou Zhang, Hong Chen, Xue Wang, Donglin Guo, Chenguo Hu, Shuxia Wang, Junliang Sun, Qiang Leng, Synthesis and structure determination of potassium copper selenide nanowires and solid-state supercapacitor application, Journal of Power Sources, Volume 268, 5 December 2014
  • Jae-Hun Jeong, Dong-Won Jung, Eun-Suok Oh, Lithium storage characteristics of a new promising gallium selenide anodic material, Journal of Alloys and Compounds, Volume 613, 15 November 2014
  • Yeon Hwa Jo, Jin Woo Jang, Yong Soo Cho, Spatial and RF power dependence of the structural and electrical characteristics of copper zinc tin selenide thin films prepared by single elementary target sputtering, Materials Chemistry and Physics, Volume 148, Issues 1–2, 14 November 2014
  • Sharmistha Anwar, Shahid Anwar, Barada Kanta Mishra, Saroj kumar Singh, Investigations on structural, optical and thermoelectric parameters of spray deposited bismuth selenide thin films with different substrate temperature, Materials Chemistry and Physics, Volume 148, Issues 1–2, 14 November 2014
  • Omid Amiri, Masoud Salavati-Niasari, S. Mostafa Hosseinpour-Mashkani, Ali Rafiei, Samira Bagheri, Cadmium selenide@sulfide nanoparticle composites: Facile precipitation preparation, characterization, and investigation of their photocatalyst activity, Materials Science in Semiconductor Processing, Volume 27, November 2014
  • J. Ashok Kumar, S. Perumal, K.R. Murali, Brush electrodeposited silver indium selenide films and their optical characteristics, Materials Science in Semiconductor Processing, Volume 27, November 2014
  • Mohammad Sabet, Masoud Salavati-Niasari, Deposition of cadmium selenide semiconductor nanostructures on TiO2 surface via different chemical methods and investigation of their effects on dye sensitized solar cell efficiency, Materials Science in Semiconductor Processing, Volume 27, November 2014
  • Worasak Sukkabot, Tight-binding study of the manipulation of the structural and optical properties in cadmium selenide/zinc sulfide core/shell nanocrystals with shell thickness, Materials Science in Semiconductor Processing, Volume 27, November 2014
  • Remigijus Ivanauskas, Linas Samardokas, Marius Mikolajunas, Darius Virzonis, Jonas Baltrusaitis, Polyamide–thallium selenide composite materials via temperature and pH controlled adsorption–diffusion method, Applied Surface Science, Volume 317, 30 October 2014