Skip to Page Content

Bismuth Circle

High Purity Bi Circles
CAS 7440-69-9


Product Product Code Request Quote
(2N) 99% Bismuth Circle BI-M-02-CRCL Request Quote
(3N) 99.9% Bismuth Circle BI-M-03-CRCL Request Quote
(4N) 99.99% Bismuth Circle BI-M-04-CRCL Request Quote
(5N) 99.999% Bismuth Circle BI-M-05-CRCL Request Quote
(6N) 99.9999% Bismuth Circle BI-M-06-CRCL Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Bi 7440-69-9 24890145 5359367 MFCD00134033 231-177-4 N/A [Bi] InChI=1S/Bi JCXGWMGPZLAOME-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
208.98 Yellow Powder 9.747 gm/cc N/A 271.3 °C 1560 °C 0.0792 W/cm/ K @ 298.2 K 106.8 microhm-cm @ 0 °C 1.9 Paulings 0.0296 Cal/g/ K @ 25 °C 42.7 K-Cal/gm atom at 1560 °C 2.505 Cal/gm mole Safety Data Sheet

merican Elements specializes in producing high purity Bismuth Circles with the highest possible densityHigh Purity (99.99%) Metallic Circleand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard Circle sizes range from 1" to 8" in diameter and from 2mm to 1/2" thick. We can also provide Circles outside this range. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar, or plate form, as well as other machined shapes and through other processes such as nanoparticles () and in the form of solutions and organometallics. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. See safety data and research below and pricing/lead time above. We also produce Bismuth as rod, pellets, powder, pieces, granules, ingot, wire, and in compound forms, such as oxide. Other shapes are available by request.

Bismuth (Bi) atomic and molecular weight, atomic number and elemental symbol Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental Bismuth Bismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass. For more information on bismuth, including properties, safety data, research, and American Elements' catalog of bismuth products, visit the Bismuth element page.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Warning
H228
F
11
16
EB2600000
UN 3089 4.1/PG 2
nwg
Flame-Flammables        

CUSTOMERS FOR BISMUTH CIRCLES HAVE ALSO LOOKED AT
Bismuth Acetate Bismuth Foil Bismuth Nitrate Bismuth Oxide Pellets Bismuth Chloride
Bismuth Metal Bismuth Oxide Bismuth Sputtering Target Bismuth Sheet Bismuth Fluoride
Bismuth Pellets Bismuth Powder Bismuth Indium Alloy Bismuth Tin Alloy Bismuth Oxide Nanopowder
Show Me MORE Forms of Bismuth

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Bismuth

  • Highly active magnetic bismuth tungstate/magnetite composite under visible light irradiation in the presence of hydrogen peroxide. Shan G, Fu Y, Chu X, Chang C, Zhu L. J Colloid Interface Sci. 2015 Apr 15
  • Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth-oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode. Cerovac S, Guzsvány V, Kónya Z, Ashrafi AM, Švancara I, Ron?evi? S, Kukovecz Á, Dalmacija B, Vyt?as K. Talanta. 2015 Mar
  • Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices. Fei L, Hu Y, Li X, Song R, Sun L, Huang H, Gu H, Chan HL, Wang Y. ACS Appl Mater Interfaces. 2015 Feb 18
  • Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes. Wilson JJ, Ferrier M, Radchenko V, Maassen JR, Engle JW, Batista ER, Martin RL, Nortier FM, Fassbender ME, John KD, Birnbaum ER. Nucl Med Biol. 2014 Dec 20.
  • One-dimensional edge States with giant spin splitting in a bismuth thin film. Takayama A, Sato T, Souma S, Oguchi T, Takahashi T. Phys Rev Lett. 2015 Feb 13
  • Bismuth labeling for the CT assessment of local administration of magnetic nanoparticles. Veintemillas-Verdaguer S, Luengo Y, Serna CJ, Andrés-Vergés M, Varela M, Calero M, Lazaro-Carrillo A, Villanueva A, Sisniega A, Montesinos P, Morales MP. Nanotechnology. 2015 Mar 27
  • An in vitro study on the cytotoxicity of bismuth oxychloride nanosheets in human HaCaT keratinocytes. Gao X, Zhang X, Wang Y, Wang Y, Peng S, Fan C. Food Chem Toxicol. 2015 Mar 6.
  • Laser-induced oxidation kinetics of bismuth surface microdroplets on GaAsBi studied in situ by Raman microprobe analysis. Steele JA, Lewis RA. Opt Express. 2014 Dec 29
  • Bismuth oxyiodide nanosheets: a novel high-energy anode material for lithium-ion batteries. Chen C, Hu P, Hu X, Mei Y, Huang Y. Chem Commun (Camb). 2015 Feb 18
  • Efficacy of reduced-dose regimen of a capsule containing bismuth subcitrate, metronidazole, and tetracycline given with amoxicillin and esomeprazole in the treatment of Helicobacter Pylori infection. Harb AH, El Reda ZD, Sarkis FS, Chaar HF, Sharara AI. United European Gastroenterol J. 2015 Feb
  • Glutathione and multidrug resistance protein transporter mediate a self-propelled disposal of bismuth in human cells. Hong Y, Lai YT, Chan GC, Sun H. Proc Natl Acad Sci U S A. 2015 Mar 3.
  • First-principles calculation of femtosecond symmetry-breaking atomic forces in photoexcited bismuth. Murray ÉD, Fahy S. Phys Rev Lett. 2015 Feb 6
  • Mesoporousbismuth ferrite with amplified magnetoelectric coupling and electric field-induced ferrimagnetism. Quickel TE, Schelhas LT, Farrell RA, Petkov N, Le VH, Tolbert SH. Nat Commun. 2015 Mar 10
  • Cellular uptake and biocompatibility of bismuth ferrite harmonic advanced nanoparticles. Staedler D, Passemard S, Magouroux T, Rogov A, Maguire CM, Mohamed BM, Schwung S, Rytz D, Jüstel T, Hwu S, Mugnier Y, Le Dantec R, Volkov Y, Gerber-Lemaire S, Prina-Mello A, Bonacina L, Wolf JP. Nanomedicine. 2015 Jan 31.
  • [Addition of bismuth subsalicylate to triple eradication therapy for Helicobacter pylori infection: efficiency and adverse events]. Hinostroza Morales D, Díaz Ferrer J. Rev Gastroenterol Peru. 2014 Oct-Dec
  • Mechanism of Bismuth Telluride Exfoliation in an Ionic Liquid Solvent. Ludwig T, Guo L, McCrary PD, Zhang Z, Gordon H, Quan H, Stanton M, Frazier R, Rogers RD, Wang HT, Turner CH. Langmuir. 2015 Mar 11.
  • A linear heterometallic bismuth-copper coordination polymer containing two types of organic ligands. Yue ZL, Feng YQ, Ng SW. Acta Crystallogr C Struct Chem. 2015 Feb
  • Thermal Decomposition of Bismuth Oxysulfide from Photoelectric Bi2O2S to Superconducting Bi4O4S3. Zhang X, Liu Y, Zhang G, Wang Y, Zhang H, Huang F. ACS Appl Mater Interfaces. 2015 Feb 25
  • Helicobacter pylori second-line rescue therapy with levofloxacin- and bismuth-containing quadruple therapy, after failure of standard triple or non-bismuth quadruple treatments. Gisbert JP, Romano M, Gravina AG, Solís-Muñoz P, Bermejo F, Molina-Infante J, Castro-Fernández M, Ortuño J, Lucendo AJ, Herranz M, Modolell I, Del Castillo F, Gómez J, Barrio J, Velayos B, Gómez B, Domínguez JL, Miranda A, Martorano M, Algaba A, Pabón M, Angueira T, Fernández-Salazar L, Federico A, Marín AC, McNicholl AG. Aliment Pharmacol Ther. 2015 Feb 23.
  • Nano-textured Pillars of Electrosprayed Bismuth Vanadate for Efficient Photoelectrochemical Water Splitting. Yoon H, Mali MG, Choi JY, Kim MW, Choi SK, Park H, Al-Deyab SS, Swihart MT, Yarin AL, Yoon SS. Langmuir. 2015 Mar 9.