Skip to Page Content

Boron Circle

High Purity B Circles
CAS 7440-42-8


Product Product Code Request Quote
(2N) 99% Boron Circle BO-M-02-CRCL Request Quote
(3N) 99.9% Boron Circle BO-M-03-CRCL Request Quote
(4N) 99.99% Boron Circle BO-M-04-CRCL Request Quote
(5N) 99.999% Boron Circle BO-M-05-CRCL Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
B 7440-42-8 24856149 5462311 MFCD00134034 231-151-2 N/A B InChI=1S/B ZOXJGFHDIHLPTG-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
10.811 Black/Brown 2.34 cryst. gm/cc N/A 2079 °C 2550 °C 0.274 W/cm/K @ 298.2 K 1.8 x 1012 microhm-cm @ 0 °C 2.0 Paulings 0.245 Cal/g/K @ 25 °C 128 K-Cal/gm atom at 2550 °C 5.3 Cal/gm mole Safety Data Sheet

American Elements specializes in producing high purity Boron Circles with the highest possible densityHigh Purity (99.99%) Boron Circleand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard Circle sizes range from 1" to 8" in diameter and from 2mm to 1/2" thick. We can also provide Circles outside this range. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles and in the form of solutions and organometallics. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. See safety data and research below and pricing/lead time above. We also produce Boron as rod, pellets, powder, pieces, granules, ingot, wire, and in compound forms, such as oxide. Other shapes are available by request.

Boron(B) atomic and molecular weight, atomic number and elemental symbolBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. Boron Bohr Model The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808. It was first isolated by Humphry Davy, also in 1808. Boron is classified as a metalloid is not found naturally on earth. Elemental Boron Along with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. Boron is found in borates, borax, boric acid, colemanite, kernite, and ulexite.The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax. For more information on boron, including properties, safety data, research, and American Elements' catalog of boron products, visit the Boron element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Warning
H302
Xn
22
N/A
ED7350000
N/A
3
Exclamation Mark-Acute Toxicity        

CUSTOMERS FOR BORON CIRCLES HAVE ALSO LOOKED AT
Boron Pellets Boron Rod Boron Bars Aluminum Boron Alloy Boron Oxide Nanopowder
Boron Chloride Boron Metal Boron Oxide Boron Oxide Pellets Boron Phosphate
Boron Powder Boron Foil Boron Sputtering Target Nickel Silicon Boron Alloy Boron NanoPowder
Show Me MORE Forms of Boron

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Boron

  • Organocatalytic Diboration Involving “Reductive Addition” of a Boron–Boron Bond to 4,4’-Bipyridine. Toshimichi Ohmura, Yohei Morimasa, and Michinori Suginome. J. Am. Chem. Soc.: February 10, 2015
  • Improving the Quality of GaN Crystals by using Graphene or Hexagonal Boron Nitride Nanosheets Substrate. Lei Zhang, Xianlei Li, Yongliang Shao, Jiaoxian Yu, Yongzhong Wu, Xiaopeng Hao, Zhengmao Yin, Yuanbin Dai, Yuan Tian, Qin Huo, Yinan Shen, Zhen Hua, and Baoguo Zhang. ACS Appl. Mater. Interfaces: February 9, 2015
  • Synthesis of Boron-Containing Toughening Agents and Their Application in Phenolic foams. Lin Liu, Mingtao Fu, and Zhengzhou Wang. Ind. Eng. Chem. Res.: February 3, 2015
  • Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. Yongji Gong, Huilong Fei, Xiaolong Zou, Wu Zhou, Shubin Yang, Gonglan Ye, Zheng Liu, Zhiwei Peng, Jun Lou, Robert Vajtai, Boris I. Yakobson, James M. Tour, and Pulickel M. Ajayan. Chem. Mater.: February 2, 2015
  • Alkyl-Chain-Grafted Hexagonal Boron Nitride Nanoplatelets as Oil-Dispersible Additives for Friction and Wear Reduction. Sangita Kumari, Om P. Sharma, Rashi Gusain, Harshal P. Mungse, Aruna Kukrety, Niranjan Kumar, Hiroyuki Sugimura, and Om P. Khatri. ACS Appl. Mater. Interfaces: January 27, 2015
  • Combined Crossed Molecular Beam and Ab Initio Investigation of the Reaction of Boron Monoxide (BO; X2?+) with 1,3-Butadiene (CH2CHCHCH2; X1Ag) and Its Deuterated Counterparts. Surajit Maity, Beni B. Dangi, Dorian S. N. Parker, and Ralf. I. Kaiser , Hong-Mao Lin, Hai-Ping E, Bing-Jian Sun, and A. H. H. Chang. J. Phys. Chem. A: January 27, 2015
  • Polymorphic Behavior and Enzymatic Degradation of Poly(butylene adipate) in the Presence of Hexagonal Boron Nitride Nanosheets. Yi-Ren Tang, Jun Xu, and Bao-Hua Guo. Ind. Eng. Chem. Res.: January 26, 2015
  • B-N Bond Cleavage and BN Ring Expansion at the Surface of Boron Nitride Nanotubes by Iminoborane. Rajashabala Sundaram, Steve Scheiner, Ajit K. Roy, and Tapas Kar. J. Phys. Chem. C: January 20, 2015
  • Ring Expansion Reactions of Pentaphenylborole with Dipolar Molecules as a Route to Seven-Membered Boron Heterocycles. Kexuan Huang and Caleb D. Martin. Inorg. Chem.: January 17, 2015
  • Comparative Study of Oxygen Reduction Reaction Mechanism on Nitrogen-, Phosphorus-, and Boron-Doped Graphene Surfaces for Fuel Cell Applications. M. del Cueto, P. Ocón, and J. M. L. Poyato. J. Phys. Chem. C: January 15, 2015