Skip to Page Content

Bronze Electrodes

High Purity Cu Sn Electrodes

Product Product Code Request Quote
(2N) 99% Bronze Electrode BRZ-M-02-EL Request Quote
(3N) 99.9% Bronze Electrode BRZ-M-03-EL Request Quote
(4N) 99.99% Bronze Electrode BRZ-M-04-EL Request Quote
(5N) 99.999% Bronze Electrode BRZ-M-05-EL Request Quote

American Elements specializes in producing high purity uniform shaped Bronze Electrodes with the highest possible density and smallest possible average grain sizes for use in semiconductor, Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). American Elements produces high purity Bronze Electrodes which can be used in chemical and physics experiments related to mass and heat conductivity or for demonstration purposes. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements casts any of the rare earth metals and most other advanced materials into rod, bar, or plate form, as well as other machined shapes and through other processes such as nanoparticles () and in the form of solutions and organometallics. See safety data and research below and pricing/lead time above.

Copper Bohr ModelCopper (Cu) atomic and molecular weight, atomic number and elemental symbolCopper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar] 3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a red-orange metallic luster appearance. Elemental Copper Of all pure metals, only silver has a higher electrical conductivity.The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus." Cyprus, a Mediterranean island, was known as an ancient source of mined copper. For more information on copper, including properties, safety data, research, and American Elements' catalog of copper products, visit the Copper element page.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.

Copper Oxide Copper Nitrate Copper Pellets Copper Acetylacetonate Copper Acetate
Copper Tin Silver Alloy Copper Metal Copper Oxide Pellets Copper Wire Copper Foil
Copper Chloride Copper Sputtering Target Copper Powder Copper Nanoparticles Aluminum Magnesium Copper Alloy
Show Me MORE Forms of Copper

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Copper

  • The Environmental Legacy of Copper Metallurgy and Mongol Silver Smelting Recorded in Yunnan Lake Sediments. Aubrey L. Hillman, Mark B. Abbott, JunQing Yu, Daniel J. Bain, and TzeHuey Chiou-Peng. Environ. Sci. Technol.: February 16, 2015
  • Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. Wei-Wei Wang, Pei-Pei Du, Shi-Hui Zou, Huan-Yu He, Rui-Xing Wang, Zhao Jin, Shuo Shi, Yuying Huang, Rui Si, Qi-Sheng Song, Chun-Jiang Jia, and Chun-Hua Yan. ACS Catal.: February 13, 2015
  • NO Decomposition Activated by Preadsorption of O2 onto Copper Cluster Anions. Shinichi Hirabayashi and Masahiko Ichihashi. J. Phys. Chem. C: February 12, 2015
  • Synthesis of Vinyl Trifluoromethyl Thioethers via Copper-Mediated Trifluoromethylthiolation of Vinyl Bromides. Yangjie Huang, Jianping Ding, Chuyi Wu, Huidong Zheng, and Zhiqiang Weng. J. Org. Chem.: 42047
  • Renal Clearance and Degradation of Glutathione-coated Copper Nanoparticles. Jie Zheng, Shengyang Yang, Shasha Sun, Chen Zhou, Guiyang Hao, Jinbin Liu, Saleh Ramezani, Mengxiao Yu, and Xiankai Sun. Bioconjugate Chem.: February 12, 2015
  • Copper-Catalyzed N-Cyanation of Sulfoximines by AIBN. Fan Teng, Jin-Tao Yu, Zhou Zhou, Haoke Chu, and Jiang Cheng. J. Org. Chem.: 42045
  • Aggregation, dissolution and transformation of copper nanoparticles in natural waters. Jon Robert Conway, Adeyemi S. Adeleye, Jorge L Gardea-Torresdey, and Arturo A. Keller. Environ. Sci. Technol.: February 9, 2015
  • Lewis Acid-Induced Change from Four- to Two-Electron Reduction of Dioxygen Catalyzed by Copper Complexes Using Scandium Triflate. Saya Kakuda, Clarence Rolle, Kei Ohkubo, Maxime A. Siegler, Kenneth D. Karlin, and Shunichi Fukuzumi. J. Am. Chem. Soc.: February 7, 2015
  • Tris(2,2'-azobispyridine) Complexes of Copper(II): X-ray Structures, Reactivities, and the Radical Nonradical Bis(ligand) Analogues. Suvendu Maity, Suman Kundu, Thomas Weyhermüller, and Prasanta Ghosh. Inorg. Chem.: February 4, 2015
  • Proton Conduction and Long-Range Ferrimagnetic Ordering in Two Isostructural Copper(II) Mesoxalate Metal–Organic Frameworks. Beatriz Gil-Hernández, Stanislav Savvin, Gamall Makhloufi, Pedro Núñez, Christoph Janiak, and Joaquín Sanchiz. Inorg. Chem.: February 4, 2015

Recent Research & Development for Tin

  • Oxidative Additions of Homoleptic Tin(II) Amidinate. Tomáš Chlupatý, Zde?ka R?ži?ková, Michal Horá?ek, Mercedes Alonso, Frank De Proft, Hana Kampová, Ji?í Brus, and Aleš R?ži?ka. Organometallics: January 28, 2015
  • Efficient Chemisorption of Organophosphorous Redox Probes on Indium Tin Oxide Surfaces under Mild Conditions. Amélie Forget, Benoît Limoges, and Véronique Balland. Langmuir: January 22, 2015
  • Influence of Texture Coefficient on Surface Morphology and Sensing Properties of W-Doped Nanocrystalline Tin Oxide Thin Films. Manjeet Kumar, Akshay Kumar, and A. C. Abhyankar. ACS Appl. Mater. Interfaces: January 20, 2015
  • Using the Thallous Ion Exchange Method to Exchange Tin into High Alumina Zeolites. 1. Crystal Structure of |Sn2+5.3Sn4+0.8Cl–1.8|[Si12Al12O48]-LTA. Jean Marie Vianney Nsanzimana, Cheol Woong Kim, Nam Ho Heo, and Karl Seff. J. Phys. Chem. C: January 16, 2015
  • Water-Dispersible Small Monodisperse Electrically Conducting Antimony-Doped Tin Oxide. Kristina Peters, Patrick Zeller, Goran Stefanic, Volodymyr Skoromets, Hynek N?mec, Petr Kužel, and Dina Fattakhova-Rohlfing. Chem. Mater.: January 9, 2015
  • A Paramagnetic Heterobimetallic Polymer: Synthesis, Reactivity, and Ring-Opening Polymerization of Tin-Bridged Homo- and Heteroleptic Vanadoarenophanes. Holger Braunschweig, Alexander Damme, Serhiy Demeshko, Klaus Dück, Thomas Kramer, Ivo Krummenacher, Franc Meyer, Krzysztof Radacki, Sascha Stellwag-Konertz, and George R. Whittell. J. Am. Chem. Soc.: January 5, 2015
  • Pendant Alkyl and Aryl Groups on Tin Control Complex Geometry and Reactivity with H2/D2 in Pt(SnR3)2(CNBut)2 (R = But, Pri, Ph, Mesityl). Anjaneyulu Koppaka, Lei Zhu, Veeranna Yempally, Derek Isrow, Perry J. Pellechia, and Burjor Captain. J. Am. Chem. Soc.: December 24, 2014
  • Electrochemical Modification of Indium Tin Oxide Using Di(4-nitrophenyl) Iodonium Tetrafluoroborate. Matthew R. Charlton, Kristin J. Suhr, Bradley J. Holliday, and Keith J. Stevenson. Langmuir: December 19, 2014
  • DNA Adsorption by Indium Tin Oxide Nanoparticles. Biwu Liu and Juewen Liu. Langmuir: December 18, 2014
  • Tin and Silicon Binary Oxide on the Carbon Support of a Pt Electrocatalyst with Enhanced Activity and Durability.. Fan Luo, Shijun Liao, Dai Dang, Yan Zheng, Dongwei Xu, Haoxiong Nan, Ting Shu, and Zhiyong Fu. ACS Catal.: December 3, 2014