Skip to Page Content

Bronze Electrodes

High Purity Cu Sn Electrodes


Product Product Code Request Quote
(2N) 99% Bronze Electrode BRZ-M-02-EL Request Quote
(3N) 99.9% Bronze Electrode BRZ-M-03-EL Request Quote
(4N) 99.99% Bronze Electrode BRZ-M-04-EL Request Quote
(5N) 99.999% Bronze Electrode BRZ-M-05-EL Request Quote

American Elements specializes in producing high purity uniform shaped Bronze Electrodes with the highest possible density and smallest possible average grain sizes for use in semiconductor, Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). American Elements produces high purity Bronze Electrodes which can be used in chemical and physics experiments related to mass and heat conductivity or for demonstration purposes. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements casts any of the rare earth metals and most other advanced materials into rod, bar, or plate form, as well as other machined shapes and through other processes such as nanoparticles () and in the form of solutions and organometallics. See safety data and research below and pricing/lead time above.

Copper Bohr ModelCopper (Cu) atomic and molecular weight, atomic number and elemental symbolCopper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar] 3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a red-orange metallic luster appearance. Elemental Copper Of all pure metals, only silver has a higher electrical conductivity.The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus." Cyprus, a Mediterranean island, was known as an ancient source of mined copper. For more information on copper, including properties, safety data, research, and American Elements' catalog of copper products, visit the Copper element page.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.


CUSTOMERS FOR BRONZE ELECTRODES HAVE ALSO LOOKED AT
Copper Oxide Copper Nitrate Copper Pellets Copper Acetylacetonate Copper Acetate
Copper Tin Silver Alloy Copper Metal Copper Oxide Pellets Copper Wire Copper Foil
Copper Chloride Copper Sputtering Target Copper Powder Copper Nanoparticles Aluminum Magnesium Copper Alloy
Show Me MORE Forms of Copper

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Copper

  • Crystal structure of bis-(2-{[(3-bromo-prop-yl)imino]-meth-yl}phenolato-κ(2) N,O)copper(II). Ourari A, Zoubeidi C, Bouacida S, Derafa W, Merazig H. Acta Crystallogr E Crystallogr Commun. 2015 Jan 24: Acta Crystallogr E Crystallogr Commun
  • Sustainable Hydrogen Production by Ethanol Steam Reforming using a Partially Reduced Copper-Nickel Oxide Catalyst. Chen LC, Cheng H, Chiang CW, Lin SD. ChemSusChem. 2015 Apr 15.: ChemSusChem
  • [Effects of grafting on physiological characteristics of melon (Cucumis melo) seedlings under copper stress]. Tan MM, Zhang XY, Fu QS, He ZQ, Wang HS. Ying Yong Sheng Tai Xue Bao. 2014 Dec: Ying Yong Sheng Tai Xue Bao
  • Optimisation of Direct Copper Determination in Human Breast Milk Without Digestion by Zeeman Graphite Furnace Atomic Absorption Spectrophotometry with Two Chemical Modifiers. Pineau A, Fauconneau B, Marrauld A, Lebeau A, Hankard R, Guillard O. Biol Trace Elem Res. 2015 Feb 10. : Biol Trace Elem Res
  • Aerosol assisted CVD grown WO3 nanoneedles decorated with copper oxide nanoparticles for the selective and humidity resilient detection of H2S. Annanouch FE, Haddi Z, Vallejos S, Umek P, Guttmann P, Bittencourt C, Llobet E. ACS Appl Mater Interfaces. 2015 Mar 16.
  • Enhanced Photoelectrocatalytic Decomposition of Copper Cyanide Complexes and Simultaneous Recovery of Copper with Bi2MoO6 Electrode under Visible Light by EDTA/K4P2O7. Zhao X, Zhang J, Qiao M, Liu H, Qu J. Environ Sci Technol. 2015 Mar 13.
  • Comparative toxicity of copper nanoparticles across three Lemnaceae species. Song L, Vijver MG, Peijnenburg WJ. Sci Total Environ. 2015 Mar 9
  • Copper(i)-catalyzed heteroannulation of [60]fullerene with ketoxime acetates: preparation of novel 1-fulleropyrrolines. Jiang SP, Su YT, Liu KQ, Wu QH, Wang GW. Chem Commun (Camb). 2015 Mar 13.
  • Suppressing Bacterial Interaction with Copper Surfaces through Graphene and Hexagonal-Boron Nitride Coatings. Parra C, Montero-Silva F, Henriquez R, Flores M, Garin C, Ramirez C, Moreno M, Correa J, Seeger M, Häberle P. ACS Appl Mater Interfaces. 2015 Mar 16.
  • Adsorption of copper on tri-amino-functionalized mesoporous delta manganese dioxide from aqueous solution. Zhai Y, Xu X, Wang H, Shi X, Lei D. Water Sci Technol. 2015 Mar

Recent Research & Development for Tin

  • Imaging the Parasinus Region with a Third-Generation Dual-Source CT and the Effect of Tin Filtration on Image Quality and Radiation Dose. Lell MM, May MS, Brand M, Eller A, Buder T, Hofmann E, Uder M, Wuest W. AJNR Am J Neuroradiol. 2015 Mar 26. : AJNR Am J Neuroradiol
  • Efficiency Enhancement in Polymer Light-Emitting Diodes via Embedded Indium-Tin-Oxide Nanorods. Li HD, Hsu CS, Zhan FM, Chao YC. ACS Appl Mater Interfaces. 2015 Apr 15: ACS Appl Mater Interfaces
  • Determination of bromine and tin compounds in plastics using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). İzgi B, Kayar M. Talanta. 2015 Jul 1: Talanta
  • Nanotubular Heterostructure of Tin Dioxide/Titanium Dioxide as a Binder-Free Anode in Lithium-Ion Batteries. Kim M, Lee J, Lee S, Seo S, Bae C, Shin H. ChemSusChem. 2015 Mar 20.: ChemSusChem
  • Tuning the reactivity of nanostructured indium tin oxide electrodes toward chemisorption. Forget A, Tucker RT, Brett MJ, Limoges B, Balland V. Chem Commun (Camb). 2015 Apr 25: Chem Commun (Camb)
  • Crystal structure of catena-poly[[tri-methyl-tin(IV)]-μ-2-(2-nitro-phen-yl)acetato-κ(2) O:O']. Danish M, Tahir MN, Iftikhar S, Raza MA, Ashfaq M. Acta Crystallogr E Crystallogr Commun. 2015 Feb 4: Acta Crystallogr E Crystallogr Commun
  • Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles. Roshanghias A, Yakymovych A, Bernardi J, Ipser H. Nanoscale. 2015 Mar 19: Nanoscale
  • Indium Tin Oxide-Free Transparent Conductive Electrode for GaN-Based Ultraviolet Light-Emitting Diodes. Kim JY, Jeon JH, Kwon MK. ACS Appl Mater Interfaces. 2015 Apr 13. : ACS Appl Mater Interfaces
  • Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles. Roshanghias A, Yakymovych A, Bernardi J, Ipser H. Nanoscale. 2015 Mar 11.
  • Reductive Electropolymerization of a Vinyl-containing Poly-pyridyl Complex on Glassy Carbon and Fluorine-doped Tin Oxide Electrodes. Harrison DP, Carpenter LS, Hyde JT. J Vis Exp. 2015 Jan 30