Bronze Electrodes

High Purity Cu Sn Electrodes


Product Product Code Order or Specifications
(2N) 99% Bronze Electrode BRZ-M-02-EL Contact American Elements
(3N) 99.9% Bronze Electrode BRZ-M-03-EL Contact American Elements
(4N) 99.99% Bronze Electrode BRZ-M-04-EL Contact American Elements
(5N) 99.999% Bronze Electrode BRZ-M-05-EL Contact American Elements

American Elements specializes in producing high purity uniform shaped Bronze Electrodes with the highest possible density and smallest possible average grain sizes for use in semiconductor, Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). American Elements produces high purity Bronze Electrodes which can be used in chemical and physics experiments related to mass and heat conductivity or for demonstration purposes. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and in the form of solutions and organometallics. See safety data and research below and pricing/lead time above.

Copper Bohr ModelCopper (Cu) atomic and molecular weight, atomic number and elemental symbolCopper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar] 3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC.In its elemental form, copper has a red-orange metallic luster appearance. Elemental Copper Of all pure metals, only silver has a higher electrical conductivity.The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus." Cyprus, a Mediterranean island, was known as an ancient source of mined copper. For more information on copper, including properties, safety data, research, and American Elements' catalog of copper products, visit the Copper Information Center.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin Information Center.


CUSTOMERS FOR BRONZE ELECTRODES HAVE ALSO LOOKED AT
Show Me MORE Forms of Copper

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Copper

  • Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Bulcke F, Thiel K, Dringen R. Nanotoxicology. 2014 Nov.
  • Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Song L, Connolly M, Fernández-Cruz ML, Vijver MG, Fernández M, Conde E, de Snoo GR, Peijnenburg WJ, Navas JM. Nanotoxicology. 2014 Jun.
  • Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Perreault F, Samadani M, Dewez D. Nanotoxicology. 2014 Jun.
  • Copper, zinc superoxide dismutase and nitrate reductase coimmobilized bienzymatic biosensor for the simultaneous determination of nitrite and nitrate. Biosens Bioelectron. 2014 | first author:Madasamy T
  • Nanopore detection of copper ions using a polyhistidine probe. Wang G, Wang L, Han Y, Zhou S, Guan X. Biosens Bioelectron. 2014 Mar.
  • Ultrasound assisted synthesis of {[Cu2(BDC)2(dabco)].2DMF.2H2O} nanostructures in the presence of modulator; new precursor to prepare nano copper oxides. Alavi MA, Morsali A. Ultrason Sonochem. 2014 Mar.
  • Synthesis and application of surface-imprinted activated carbon sorbent for solid-phase extraction and determination of copper (II). Spectrochim Acta A Mol Biomol Spectrosc. 2014 | first author:Li Z
  • Catalytic activity of copper (II) oxide prepared via ultrasound assisted Fenton-like reaction. Angi A, Sanli D, Erkey C, Birer O. Ultrason Sonochem. 2014 Mar
  • Effect of substituent of terpyridines on the in vitro antioxidant, antitubercular, biocidal and fluorescence studies of copper(II) complexes with clioquinol. Spectrochim Acta A Mol Biomol Spectrosc. 2014 create date:2013/10/17 | first author:Kharadi GJ
  • Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2014 create date:2013/08/31 | first author:Shebl M
  • Linear and nonlinear optical studies of bare and copper doped TiO2 nanoparticles via sol gel technique. Spectrochim Acta A Mol Biomol Spectrosc. 2014 create date:2013/10/08 | first author:Rajamannan B
  • Preparation and characterization of silicone rubber/nano-copper nanocomposites for use in intrauterine devices. Biomed Mater Eng. 2014 | first author:Chen Y
  • Copper use and accumulation in catfish culture in the Mekong Delta, Vietnam. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2014 | first author:Marcussen H
  • Enhanced phosphate selectivity from wastewater using copper-loaded chelating resin functionalized with polyethylenimine. An B, Nam J, Choi JW, Hong SW, Lee SH. J Colloid Interface Sci. 2013 Nov.
  • Effect of long term organic amendments and vegetation of vineyard soils on the microscale distribution and biogeochemistry of copper. Sci Total Environ. 2014 | first author:Navel A
  • Infrared characterization and electrochemical study of γ-methacryloxypropyltrimethoxysilane grafted in to surface of copper. Spectrochim Acta A Mol Biomol Spectrosc. 2014 | first author:Masmoudi M
  • Halo-substituted thiosemicarbazones and their copper(II), nickel(II) complexes: Detailed spectroscopic characterization and study of antitumour activity against HepG2 human hepatoblastoma cells. Spectrochim Acta A Mol Biomol Spectrosc. 2014 | first author:Jagadeesh M
  • A new chemiluminescence method for determination of clonazepam and diazepam based on 1-Ethyl-3-Methylimidazolium Ethylsulfate/copper as catalyst. Spectrochim Acta A Mol Biomol Spectrosc. 2014 | first author:Chaichi MJ
  • Highly selective detection of bacterial alarmone ppGpp with an off-on fluorescent probe of copper-mediated silver nanoclusters. Zhang P, Wang Y, Chang Y, Xiong ZH, Huang CZ. Biosens Bioelectron.
  • Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages. Ma GC, Wu PF, Tseng HC, Chyau CC, Lu HC, Chou FP. Food Chem.

Recent Research & Development for Tin

  • The use of isotopically enriched tin tracers to follow the transformation of organotin compounds in landfill leachate. Peeters K, Zuliani T, Scancar J, Milacic R. Water Res. 2014.
  • The role of surface and deep-level defects on the emission of tin oxide quantum dots. Kumar V, Kumar V, Som S, Neethling JH, Lee M, Ntwaeaborwa OM, Swart HC. Nanotechnology. 2014 Apr.
  • Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon. Roosta M, Ghaedi M, Daneshfar A, Sahraei R. Spectrochim Acta A Mol Biomol Spectrosc. 2014 Mar.
  • Inorganic tin compounds do not induce micronuclei in human lymphocytes in the absence of metabolic activation. Damati A, Vlastos D, Philippopoulos AI, Matthopoulos DP. Drug Chem Toxicol. 2014.
  • Synthesis, characterization and antibacterial activity of cellulose acetate-tin (IV) phosphate nanocomposite. Rathore BS, Sharma G, Pathania D, Gupta VK. Carbohydr Polym. 2014 Mar.
  • Application of ZnO/graphene and S6 aptamers for sensitive photoelectrochemical detection of SK-BR-3 breast cancer cells based on a disposable indium tin oxide device. Liu F, Zhang Y, Yu J, Wang S, Ge S, Song X. Biosens Bioelectron. 2014 Jan.
  • Electrochemical serotonin monitoring of poly(ethylenedioxythiophene):poly(sodium 4-styrenesulfonate)-modified fluorine-doped tin oxide by predeposition of self-assembled 4-pyridylporphyrin. Song MJ, Kim S, Ki Min N, Jin JH. Biosens Bioelectron. 2014 Feb.
  • Four coordinate tin complexes: Synthesis, characterization, thermodynamic and theoretical calculations. Mohammadikish M. Spectrochim Acta A Mol Biomol Spectrosc. 2014 Jan.
  • A visible light photoelectrochemical sensor for tumor marker detection using tin dioxide quantum dot-graphene as labels. Analyst. 2013 create date:2013/10/18 | first author:Wang Y
  • Optimization of a hydride generation metallic furnace atomic absorption spectrometry (HG-MF-AAS) method for tin determination: Analytical and morphological parameters of a metallic atomizer. Moretto Galazzi R, Arruda MA. Talanta. 2013 Dec.
  • Immune stimulation following dermal exposure to unsintered indium tin oxide. J Immunotoxicol. 2013 create date:2013/10/30 | first author:Brock K.
  • Gallium-Doped Tin Oxide Nano-Cuboids for Improved Dye Sensitized Solar Cell. ACS Appl Mater Interfaces. 2013 | first author:Teh JJ
  • Inorganic tin compounds do not induce micronuclei in human lymphocytes in the absence of metabolic activation. Drug Chem Toxicol. | first author:Damati A
  • Fabrication of Highly Transparent and Conductive Indium-Tin Oxide Thin Films with a High Figure of Merit via Solution Processing. Langmuir. | first author:Chen Z
  • Comparison between GC-MS and GC-ICPMS using isotope dilution for the simultaneous monitoring of inorganic and methyl mercury, butyl and phenyl tin compounds in biological tissues. Anal Bioanal Chem. 2013 create date:2013/10/19 | first author:Cavalheiro J
  • Interconnected Tin Disulfide Nanosheets Grown on Graphene for Li-ion Storage and Photocatalytic Applications. ACS Appl Mater Interfaces. 2013 | first author:Chen P
  • Mitigation of CO poisoning on functionalized Pt-TiN surfaces. Phys Chem Chem Phys. 2013 | first author:Zhang RQ
  • Cytochrome P450 Modified Polycrystalline Indium Tin Oxide Film as a Drug Metabolizing Electrochemical Biosensor with a Simple Configuration. Anal Chem. 2013 | first author:Yoshioka K
  • New understanding of hardening mechanism of TiN/SiNx-based nanocomposite films. Nanoscale Res Lett. 2013 | first author:Li W
  • Micro-Fabricated Tin-Film Electrodes for Protein and DNA Sensing Based on Stripping Voltammetric Detection of Cd(II) Released from Quantum Dots Labels. Anal Chem. 2013 | first author:Kokkinos C
  • Electrochemical serotonin monitoring of poly(ethylenedioxythiophene):poly(sodium 4-styrenesulfonate)-modified fluorine-doped tin oxide by predeposition of self-assembled 4-pyridylporphyrin. Biosens Bioelectron. 2013 | first author:Song MJ