Skip to Page Content

Cerium Board

High Purity Ce Boards
CAS 7440-45-1


Product Product Code Order or Specifications
(2N) 99% Cerium Board CE-M-02-BRD Contact American Elements
(2N5) 99.5% Cerium Board CE-M-025-BRD Contact American Elements
(3N) 99.9% Cerium Board CE-M-03-BRD Contact American Elements
(3N5) 99.95% Cerium Board CE-M-035-BRD Contact American Elements
(4N) 99.99% Cerium Board CE-M-04-BRD Contact American Elements
(5N) 99.999% Cerium Board CE-M-05-BRD Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Ce 7440-45-1 24869828 23974 MFCD00010924 231-154-9 N/A [Ce] InChI=1S/Ce GWXLDORMOJMVQZ-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
140.12 Silvery 6689kg/m³ N/A 795°C 3360°C 0.113/cm/K @ 298.2 K 75.0 microhm-cm @ 25 °C 1.1 Paulings 0.049 Cal/g/K @ 25°C 95 K-cal/gm atom at 3426°C 2.12 Cal/gm mole Safety Data Sheet

99.999% High Purity Cerium BoardSee research below. American Elements specializes in producing Cerium Boards in various thicknesses and sizes. Most Boards are produced from cast Ingots for use in coating and thin film Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Organometallic and Chemical Vapor Deposition (MOCVD) for specific applications such as fuel cells and solar energy. Thickness can range from 0.04" to 0.25" for all metals. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles (see Nanotechnology and Quantum Dots application discussions) and in the form of solutions and organometallics. Cerium metal was historically used in alloys to make permanent magnets, but this has become a less common use for the metal. Currently cerium metal is used in a number of alloys for a wide range of applications. Alloying cerium with iron improves machinability of automotive power-train components. Cerium can be added to magnesium alloys as a grain boundary modifier and can be used to make aluminum alloys. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. We also produce Cerium shapes are available by request.

Cerium (Ce) atomic and molecular weight, atomic number and elemental symbolCerium (atomic symbol: Ce, atomic number: 58) is a Block F, Group 3, Period 6 element with an atomic weight of 140.116. The number of electrons in each of cerium's shells is 2, 8, 18, 19, 9, 2 and its electron configuration is [Xe]4f2 6s2. Cerium Bohr ModelThe cerium atom has a radius of 182.5 pm and a Van der Waals radius of 235 pm. In its elemental form, cerium has a silvery white appearance. Cerium is the most abundant of the rare earths metals. It is characterized chemically by having two valence states, the +3 cerous and +4 ceric states. The ceric state is the only non-trivalent rare earth ion stable in aqueous solutions. Elemental CeriumIt is, therefore, strongly acidic and moderately toxic. It is also a strong oxidizer. The cerous state closely resembles the other trivalent rare earths. Cerium is found in the minerals allanite, bastnasite, hydroxylbastnasite, monazite, rhabdophane, synchysite and zircon. Cerium was discovered by Martin Heinrich Klaproth, Jöns Jakob Berzelius, and Wilhelm Hisinger in 1803 and first isolated by Carl Gustaf Mosander in 1839. The element was named after the asteroid Ceres. For more information on cerium, including properties, safety data, research, and American Elements' catalog of cerium products, visit the Cerium Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H228-H302-H312-H315-H319-H332-H335
F, Xn
11-20/21/22-36/37/38
16-26-36/37/39
N/A
UN 1333 4.1/PG 2
3
Exclamation Mark-Acute Toxicity Flame-Flammables      

CUSTOMERS FOR CERIUM BOARDS HAVE ALSO LOOKED AT
Show Me MORE Forms of Cerium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Cerium