Chromium Circle

High Purity Cr Circles
CAS 7440-47-3


Product Product Code Order or Specifications
(2N) 99% Chromium Circle CR-M-02-CRCL Contact American Elements
(3N) 99.9% Chromium Circle CR-M-03-CRCL Contact American Elements
(4N) 99.99% Chromium Circle CR-M-04-CRCL Contact American Elements
(5N) 99.999% Chromium Circle CR-M-05-CRCL Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Cr 7440-47-3 24863343 23976 MFCD00010944 231-157-5 N/A [Cr] InChI=1S/Cr VYZAMTAEIAYCRO-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
52.00 Silvery 7.18 gm/cc N/A 1857°C 2672°C 0.939 W/cm/K @ 298.2 K 12.9 microhm-cm @ 0°C 1.6 Paulings 0.107 Cal/g/K @ 25°C 72.97 K-cal/gm atom at 2672°C 3.66 Cal/gm mole Safety Data Sheet

American Elements specializes in producing high purity Chromium Circles with the highest possible densityHigh Purity (99.99%) Metallic Circleand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard Circle sizes range from 1" to 8" in diameter and from 2mm to 1/2" thick. We can also provide Circles outside this range. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and in the form of solutions and organometallics. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. See safety data and research below and pricing/lead time above. We also produce Chromium as rod, pellets, powder, pieces, granules, ingot, wire, and in compound forms, such as oxide. Other shapes are available by request.

Chromium (Cr) atomic and molecular weight, atomic number and elemental symbolChromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Chromium was first discovered by Louis Nicolas Vauquelin in 1797. It was first isolated in 1798, also by Louis Nicolas Vauquelin. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metal element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it tranforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma' meaning color. For more information on chromium, including properties, safety data, research, and American Elements' catalog of chromium products, visit the Chromium Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Warning
H400
N/A
N/A
N/A
GB4200000
N/A
3
Environment-Hazardous to the aquatic environment        

CUSTOMERS FOR CHROMIUM CIRCLES HAVE ALSO LOOKED AT
Chromium Chloride Chromium Fluoride Chromium Acetate Chromium Metal Chromium Acetylacetonate
Chromium Nanoparticles Chromium Oxide Pellets Chromium Sheets Chromium Iron Tantalum Alloy Chromium Pellets
Chromium Oxide Chromium Wire Chromium Sputtering Target Aluminum Chromium Alloy Chromium Powder
Show Me MORE Forms of Chromium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Chromium

  • Zhiwei Zhao, Hongjuan Zheng, Shaojing Liu, Jianhong Shen, Weiqiang Song, Jinshen Chen, Low temperature synthesis of chromium carbide (Cr3C2) nanopowders by a novel precursor method, International Journal of Refractory Metals and Hard Materials, Volume 48, January 2015
  • Meike V.F. Schlupp, Ji Woo Kim, Aude Brevet, Cyril Rado, Karine Couturier, Ulrich F. Vogt, Florence Lefebvre-Joud, Andreas Züttel, Avoiding chromium transport from stainless steel interconnects into contact layers and oxygen electrodes in intermediate temperature solid oxide electrolysis stacks, Journal of Power Sources, Volume 270, 15 December 2014
  • T.J. Pan, B. Zhang, J. Li, Y.X. He, F. Lin, An investigation on corrosion protection of chromium nitride coated Fe–Cr alloy as a bipolar plate material for proton exchange membrane fuel cells, Journal of Power Sources, Volume 269, 10 December 2014
  • Chun Wu, Jiao Gao, Qinglan Zhao, Youwei Zhang, Yansong Bai, Xingyan Wang, Xianyou Wang, Preparation and supercapacitive behaviors of the ordered mesoporous/microporous chromium carbide-derived carbons, Journal of Power Sources, Volume 269, 10 December 2014
  • Hui Zhang, Yong Zou, Zengda Zou, Chuanwei Shi, Effects of chromium addition on microstructure and properties of TiC–VC reinforced Fe-based laser cladding coatings, Journal of Alloys and Compounds, Volume 614, 25 November 2014
  • W. Weglewski, M. Basista, A. Manescu, M. Chmielewski, K. Pietrzak, Th. Schubert, Effect of grain size on thermal residual stresses and damage in sintered chromium–alumina composites: Measurement and modeling, Composites Part B: Engineering, Volume 67, November 2014
  • Suchinder K. Sharma, Aurelie Bessière, Neelima Basavaraju, Kaustubh R. Priolkar, Laurent Binet, Bruno Viana, Didier Gourier, Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in vivo imaging, Journal of Luminescence, Volume 155, November 2014
  • M. Hubert, A.J. Faber, F. Akmaz, H. Sesigur, E. Alejandro, T. Maehara, S.R. Kahl, Stabilization of divalent chromium Cr(II) in soda–lime–silicate glasses, Journal of Non-Crystalline Solids, Volume 403, 1 November 2014
  • Josip Brnic, Goran Turkalj, Sanjin Krscanski, Domagoj Lanc, Marko Canadija, Marino Brcic, Information relevant for the design of structure: Ferritic – Heat resistant high chromium steel X10CrAlSi25, Materials & Design, Volume 63, November 2014
  • Xingjian Gao, Zhengyi Jiang, Dongbin Wei, Sihai Jiao, Dengfu Chen, Jianzhong Xu, Xiaoming Zhang, Dianyao Gong, Effects of temperature and strain rate on microstructure and mechanical properties of high chromium cast iron/low carbon steel bimetal prepared by hot diffusion-compression bonding, Materials & Design, Volume 63, November 2014
  • Sergio Efrain Gomez-Gonzalez, Gregorio Guadalupe Carbajal-Arizaga, Ricardo Manriquez-Gonzalez, Wencel De la Cruz-Hernandez, Sergio Gomez-Salazar, Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups, Materials Research Bulletin, Volume 59, November 2014
  • Fei Wang, Lei Feng, Dongmei Zhang, Qingguo Tang, Dan Feng, A first-principles calculation on electronic structure and optical performance of chromium and nitrogen codoped anatase titanium dioxide, Journal of Alloys and Compounds, Volume 611, 25 October 2014
  • Mansoo Park, Kathleen C. Alexander, Christopher A. Schuh, Diffusion of tungsten in chromium: Experiments and atomistic modeling, Journal of Alloys and Compounds, Volume 611, 25 October 2014
  • T.D. Kelly, E. Echeverria, Sumit Beniwal, V.T. Adamiv, Ya. V. Burak, Axel Enders, J.C. Petrosky, J.W. McClory, P.A. Dowben, The chromium site in doped glassy lithium tetraborate, Materials Chemistry and Physics, Volume 147, Issue 3, 15 October 2014
  • Jun-Yun Kang, Yoon-Uk Heo, Hoyoung Kim, Dong-Woo Suh, Dongmin Son, Dong Hee Lee, Tae-Ho Lee, Effect of copper addition on the characteristics of high-carbon and high-chromium steels, Materials Science and Engineering: A, Volume 614, 22 September 2014
  • Fei Ma, Shu Chen, Yanhua Li, Hang Zhou, Aixin Xu, Weimin Lu, Nano-MgO supported CrOx catalysts applied in propane oxidative dehydrogenation: Relationship between active chromium phases and propane reaction pathway, Applied Surface Science, Volume 313, 15 September 2014
  • Bhavna A. Shah, Chirag B. Mistry, Ajay V. Shah, Detoxification of hexavalent chromium using hydrothermally modified agricultural detritus into mesoporous zeolitic materials, Microporous and Mesoporous Materials, Volume 196, 15 September 2014
  • F.E. Castillejo, D.M. Marulanda, J.J. Olaya, J.E. Alfonso, Wear and corrosion resistance of niobium–chromium carbide coatings on AISI D2 produced through TRD, Surface and Coatings Technology, Volume 254, 15 September 2014
  • Feixiang Wu, Xinhai Li, Zhixing Wang, Huajun Guo, Synthesis of chromium-doped lithium titanate microspheres as high-performance anode material for lithium ion batteries, Ceramics International, Volume 40, Issue 8, Part B, September 2014
  • S. Santhosh, N. Lakshminarasimhan, Impedance spectroscopic studies, dielectric properties and microstructure of rutile type chromium niobate CrNbO4, Ceramics International, Volume 40, Issue 8, Part A, September 2014