Skip to Page Content

Cobalt(II) Acetylacetonate Hydrate

Co(CH3COCHCOCH3)2 • xH2O
CAS 123334-29-2


Product Product Code Request Quote
(2N) 99% Cobalt(II) Acetylacetonate Hydrate CO2-ACAC-02-P-XHYD Request Quote
(3N) 99.9% Cobalt(II) Acetylacetonate Hydrate CO2-ACAC-03-P-XHYD Request Quote
(4N) 99.99% Cobalt(II) Acetylacetonate Hydrate CO2-ACAC-04-P-XHYD Request Quote
(5N) 99.999% Cobalt(II) Acetylacetonate Hydrate CO2-ACAC-05-P-XHYD Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Co(C5H7O2)2 • xH2O 123334-29-2 34174534 20833133 MFCD00149056 237-855-6 cobalt(2+); (Z)-4-oxopent-2-en-2-olate; hydrate N/A CC(=CC(=O)
C)[O-].CC(=
CC(=O)C)
[O-].O.[Co+2]
InChI=1S/2C5H8
O2.Co.H2O/c2*1-
4(6)3-5(2)7;;/h2*3
,6H,1-2H3;;1H2/q
;;+2;/p-2/b2*4-3-;;
CCSRIP
NIKKQYH
L-SUKNR
PLKSA-L

PROPERTIES Compound Formula Mol. Wt. Appearance Density Exact Mass Monoisotopic Mass Charge MSDS
C10H16CoO5 275.16 Pink powder N/A 275.032969 275.032969 0 Safety Data Sheet

Acetylaceton Formula Diagram (C5H8O2)Cobalt(II) Acetylacetonate is a Cobalt source that is soluble in organic solvents as an organometallic compound (also known as metalorganic, organo-inorganic and metallo-organic Acetylacetonate Packaging, Lab Quantitycompounds). The high purity acetylacetonate anion complexes by bonding each oxygen atom to the metallic cation to form a chelate ring; because of this property, acetylacetonates are commonly used in various catalysts and catalytic reagents for organic synthesis, including the fabrication of various shapes of carbon nanostructures (as demonstrated by a 2013 experiment by researchers at the Leibniz Institute for Solid State and Materials Research Dresden) via the use of chemical vapor deposition (CVD) and laser evaporation techniques. Cobalt Acetylacetonate is one of numerous organo-metallic compounds (also known as metalorganic, organo-inorganic and metallo-organic compounds) sold by American Elements under the tradename AE Organo-Metallics™ for uses requiring non-aqueous solubility such as recent solar energy and water treatment applications. Similar results can sometimes also be achieved with Nanoparticles and by thin film deposition. Note American Elements additionally supplies many materials as solutions. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Cobalt (Co) atomic and molecular weight, atomic number and elemental symbolCobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr Model The number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar] 3d7 4s2The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental Cobalt Cobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit." For more information on cobalt, including properties, safety data, research, and American Elements' catalog of cobalt products, visit the Cobalt element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Danger
Hazard Statements H302-H312-H318-H332-H351
Hazard Codes Xn
Risk Codes 20/21/22-40-41
Safety Precautions 7-22-26-37/39
RTECS Number N/A
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity Health Hazard Corrosion-Corrosive to metals    

COBALT(II) ACETYLACETONATE HYDRATE SYNONYMS
(3Z)-4-Hydroxy-3-penten-2-one - cobalt hydrate (2:1:1), Bis(2,4-pentanedionato)cobalt(II) Dihydrate, Cobalt,bis(2,4-pentanedionato-kO,kO')-, hydrate, (SP-4-1)- (9CI), Bis(acetylacetonato)cobalt hydrate

CUSTOMERS FOR COBALT(II) ACETYLACETONATE HYDRATE HAVE ALSO LOOKED AT
Cobalt Acetylacetonate Cobalt Sulfate Cobalt Bar Cobalt Oxide Nanopowder Cobalt Oxide Pellets
Cobalt Sputtering Target Cobalt Powder Cobalt Chloride Cobalt Nickel Chromium Alloy Cobalt Acetate
Cobalt Pellets Cobalt Foil Cobalt Molybdenum Alloy Cobalt Oxide Cobalt Metal
Show Me MORE Forms of Cobalt

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Cobalt

  • Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction. Zhu C, Wen D, Leubner S, Oschatz M, Liu W, Holzschuh M, Simon F, Kaskel S, Eychmüller A. Chem Commun (Camb). 2015 Apr 9. : Chem Commun (Camb)
  • In-Situ Formation of Hollow Hybrids Composed of Cobalt Sulfides Embedded within Porous Carbon Polyhedra/Carbon Nanotubes for High-Performance Lithium-Ion Batteries. Wu R, Wang DP, Rui X, Liu B, Zhou K, Law AW, Yan Q, Wei J, Chen Z. Adv Mater. 2015 Apr 9.: Adv Mater
  • Efficient oxygen reduction catalysts formed of cobalt phosphide nanoparticle decorated heteroatom-doped mesoporous carbon nanotubes. Chen K, Huang X, Wan C, Liu H. Chem Commun (Camb). 2015 Apr 9. : Chem Commun (Camb)
  • Rapid prototyping for in vitro knee rig investigations of prosthetized knee biomechanics: comparison with cobalt-chromium alloy implant material. Schröder C, Steinbrück A, Müller T, Woiczinski M, Chevalier Y, Weber P, Müller PE, Jansson V. Biomed Res Int. 2015: Biomed Res Int
  • Cobalt-catalyzed ammonia borane dehydrocoupling and transfer hydrogenation under aerobic conditions. Pagano JK, Stelmach JP, Waterman R. Dalton Trans. 2015 Mar 5.
  • Influence of Bi3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Gore SK, Mane RS, Naushad M, Jadhav SS, Zate MK, Alothman ZA, Hui BK. Dalton Trans. 2015 Mar 6.
  • Investigation on cobalt-oxide nanoparticles cyto-genotoxicity and inflammatory response in two types of respiratory cells. Cavallo D, Ciervo A, Fresegna AM, Maiello R, Tassone P, Buresti G, Casciardi S, Iavicoli S, Ursini CL. J Appl Toxicol. 2015 Mar 13.
  • Controllable fabrication and magnetic properties of double-shell cobalt oxide hollow particles. Zhang D, Zhu J, Zhang N, Liu T, Chen L, Liu X, Ma R, Zhang H, Qiu G. Sci Rep. 2015 Mar 4
  • N-doped graphitic layer encased cobalt nanoparticles as efficient oxygen reduction catalysts in alkaline media. Han C, Bo X, Zhang Y, Li M, Nsabimana A, Guo L. Nanoscale. 2015 Mar 9.
  • Air- and Water-Resistant Noble Metal Coated Ferromagnetic Cobalt Nanorods. Lentijo-Mozo S, Tan RP, Garcia-Marcelot C, Altantzis T, Fazzini PF, Hungria T, Cormary B, Gallagher JR, Miller JT, Martinez H, Schrittwieser S, Schotter J, Respaud M, Bals S, Tendeloo GV, Gatel C, Soulantica K. ACS Nano. 2015 Mar 9.

Recent Research & Development for Acetylacetonates

  • High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Tan Z, Li S, Wang F, Qian D, Lin J, Hou J, Li Y. Sci Rep. 2014 Apr 15: Sci Rep
  • Antitumor efficacy and tolerability of systemically administered gallium acetylacetonate-loaded gelucire-stabilized nanoparticles. Wehrung D, Bi L, Geldenhuys WJ, Oyewumi MO. J Biomed Nanotechnol. 2013 Jun: J Biomed Nanotechnol
  • Binary Diffusion Coefficients of Platinum(II) Acetylacetonate in Supercritical Carbon Dioxide. Kong CY, Siratori T, Wang G, Sako T, Funazukuri T. J Chem Eng Data. 2013 Nov 14: J Chem Eng Data
  • Vanadyl acetylacetonate upregulates PPARγ and adiponectin expression in differentiated rat adipocytes. Wu Y, Huang M, Zhao P, Yang X. J Biol Inorg Chem. 2013 Aug: J Biol Inorg Chem
  • [Differentiated fluorescence centers in europium acetylacetonate hydrate doped poly methyl methacrylate]. Zhang YY, Zhong H, Chen BJ, Xia Y, Lin H. Guang Pu Xue Yu Guang Pu Fen Xi. 2014 Jun: Guang Pu Xue Yu Guang Pu Fen Xi
  • Effect of magnesium acetylacetonate on the signal of organic forms of vanadium in graphite furnace atomic absorption spectrometry. Kowalewska Z, Welz B, Castilho IN, Carasek E. Talanta. 2013 Jan 15: Talanta
  • [Differentiated fluorescence centers in europium acetylacetonate hydrate doped poly methyl methacrylate]. Zhang YY, Zhong H, Chen BJ, Xia Y, Lin H. Guang Pu Xue Yu Guang Pu Fen Xi. 2014 Jun
  • High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Tan Z, Li S, Wang F, Qian D, Lin J, Hou J, Li Y. Sci Rep. 2014 Apr 15
  • Vanadyl acetylacetonate upregulates PPARγ and adiponectin expression in differentiated rat adipocytes. Wu Y, Huang M, Zhao P, Yang X. J Biol Inorg Chem. 2013 Aug
  • Binary Diffusion Coefficients of Platinum(II) Acetylacetonate in Supercritical Carbon Dioxide. Kong CY, Siratori T, Wang G, Sako T, Funazukuri T. J Chem Eng Data. 2013 Nov 14