Cobalt Nickel Chromium Molybdenum Alloy

Co Ni Cr Fe Mo Ti Alloy


Product Product Code Order or Specifications
Co- Ni-35% Cr-20% Mo-10% CONI-CRMO-01-P.10MO Contact American Elements
Co- Ni-35% Cr-28% Mo-10% Low Ti CONI-CRMO-01-P.10MO Contact American Elements

Cobalt Nickel Chromium Molybdenum is one of numerous metal alloys sold by American Elements under the tradename AE Alloys™. Generally immediately available in most volumes, AE Alloys™ are available as bar, Ingot, ribbon, wire, shot, sheet, and foil. Ultra high purity and high purity forms also include metal powder, submicron powder and nanoscale, targets for thin film deposition, and pellets for chemical vapor deposition (CVD) and physical vapor deposition (PVD) applications. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Primary applications include bearing assembly, ballast, casting, step soldering, and radiation shielding.

Cobalt(Co) atomic and molecular weight, atomic number and elemental symbolCobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195.Cobalt Bohr Model The number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar] 3d7 4s2The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental Cobalt Cobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit." For more information on cobalt, including properties, safety data, research, and American Elements' catalog of cobalt products, visit the Cobalt Information Center.

Nickel (Ni) atomic and molecular weight, atomic number and elemental symbolNickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Elemental Nickel Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. It is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word "kupfernickel," which means "false copper" from the illusory copper color of the ore. For more information on nickel, including properties, safety data, research, and American Elements' catalog of nickel products, visit the Nickel Information Center.


Chromium (Cr) atomic and molecular weight, atomic number and elemental symbolChromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Chromium was first discovered by Louis Nicolas Vauquelin in 1797. It was first isolated in 1798, also by Louis Nicolas Vauquelin. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metal element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it tranforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma' meaning color. For more information on chromium, including properties, safety data, research, and American Elements' catalog of chromium products, visit the Chromium Information Center.

Molybdenum (Mo) atomic and molecular weight, atomic number and elemental symbolMolybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust.Elemental Molybdenum It has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead. For more information on molybdenum, including properties, safety data, research, and American Elements' catalog of molybdenum products, visit the Molybdenum Information Center.


CUSTOMERS FOR COBALT NICKEL CHROMIUM MOLYBDENUM ALLOY HAVE ALSO LOOKED AT
Show Me MORE Forms of Cobalt

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


  • J.M. Xu, J. Zhang, B.B. Wang, F. Liu, Shape-regulated synthesis of cobalt oxide and its gas-sensing property, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Zhuang-hao Zheng, Ping Fan, Guang-xing Liang, Dong-ping Zhang, Influence of deposition temperature on the microstructure and thermoelectric properties of antimonide cobalt thin films prepared by ion beam sputtering deposition, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Dragoslav Ilić, Verica V. Jevtić, Miorad M. Vasojević, Miodrag Ž. Jelić, Ivana D. Radojević, Ljiljana R. Čomić, Slađana B. Novaković, Goran A. Bogdanović, Ivan Potočňák, Srećko R. Trifunović, Stereospecific ligands and their complexes. Part XXI. Synthesis, characterization, circular dichroism and antimicrobial activity of cobalt(III) complexes with some edda-type of ligands. Crystal structure of potassium-Δ-(−)589-s-cis-oxalato-(S,S)-ethylenediamine-N,N′-di-(2-propanoato)-cobaltate(III)-semihydrate, K-Δ-(−)589-s-cis-[Co(S,S-eddp)(ox)]·0.5H2O, Polyhedron, Volume 85, 8 January 2015
  • Carmen Cretu, Ramona Tudose, Liliana Cseh, Wolfgang Linert, Eleftherios Halevas, Antonios Hatzidimitriou, Otilia Costisor, Athanasios Salifoglou, Schiff base coordination flexibility toward binary cobalt and ternary zinc complex assemblies. The case of the hexadentate ligand N,N′-bis[(2-hydroxybenzilideneamino)-propyl]-piperazine, Polyhedron, Volume 85, 8 January 2015
  • Michael Bubnov, Nina Skorodumova, Alla Arapova, Natalya Smirnova, Artem Bogomyakov, Maxim Samsonov, Vladimir Cherkasov, Gleb Abakumov, New bis-o-semiquinonato cobalt complexes with 1,10-phenanthroline ligands, Polyhedron, Volume 85, 8 January 2015
  • Mahendra Ghosh, Manas Layek, Michel Fleck, Rajat Saha, Debasis Bandyopadhyay, Synthesis, crystal structure and antibacterial activities of mixed ligand copper(II) and cobalt(II) complexes of a NNS Schiff base, Polyhedron, Volume 85, 8 January 2015
  • Kihun Jang, Seongil Yu, Sung-Hyeon Park, Hak-Sung Kim, Heejoon Ahn, Intense pulsed light-assisted facile and agile fabrication of cobalt oxide/nickel cobaltite nanoflakes on nickel-foam for high performance supercapacitor applications, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • Ying Deng, Xiang Xiong, J.P. Zou, Ling Deng, M.J. Tu, Control of morphology and structure for β-Co nanoparticles from cobalt oxalate and research on its phase-change mechanism, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • G. Vignesh, Y. Manojkumar, K. Sugumar, S. Arunachalam, Spectroscopic investigation on the interaction of some polymer–cobalt(III) complexes with serum albumins, Journal of Luminescence, Volume 157, January 2015
  • Poonam Pahuja, R.K. Kotnala, R.P. Tandon, Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite, Journal of Alloys and Compounds, Volume 617, 25 December 2014