Bis(ethylcyclopentadienyl)cobalt(III) hexafluorophosphate  

C14C18CoF6P
CAS 52308-79-9


Product Product Code Order or Specifications
(2N) 99% Bis(ethylcyclopentadienyl)cobalt(III) hexafluorophosphate  CO-OM3-02-PF6 Contact American Elements
(3N) 99.9% Bis(ethylcyclopentadienyl)cobalt(III) hexafluorophosphate CO-OM3-03-PF6 Contact American Elements
(4N) 99.99% Bis(ethylcyclopentadienyl)cobalt(III) hexafluorophosphate CO-OM3-04-PF6 Contact American Elements
(5N) 99.999% Bis(ethylcyclopentadienyl)cobalt(III) hexafluorophosphate CO-OM3-05-PF6 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name SMILES
Identifier
InChI
Identifier
InChI
Key
Co(C7H9)2(PF6) 52308-79-9 40717351 16213736 MFCD01863702 N/A cobalt; ethylcyclopentane; hexafluorophosphate CC[C]1[CH]
[CH][CH][CH]
1.CC[C]1[CH]
[CH][CH][CH
]1.F[P-](F)
(F)(F)(F)F.[Co]
InChI=1S/2C7H9.
Co.F6P/c2*1-2-7
-5-3-4-6-7;;1-7(2,
3,4,5)6/h2*3-6H,
2H2,1H3;;/q;;;-1
OKNORMJNKPIKBH-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
C14C18CoF6P 390.19 Solid 148-151 °C N/A N/A 390.038227 390.038227 -1 Safety Data Sheet

Bis(ethylcyclopentadienyl)cobalt(III) hexafluorophosphate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Cobalt(Co) atomic and molecular weight, atomic number and elemental symbolCobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195.Cobalt Bohr Model The number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar] 3d7 4s2The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental Cobalt Cobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit." For more information on cobalt, including properties, safety data, research, and American Elements' catalog of cobalt products, visit the Cobalt Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H315-H319-H335
Hazard Codes Xi
Risk Codes 36/37/38
Safety Precautions 26-36
RTECS Number N/A
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity        


CUSTOMERS FOR BIS(ETHYLCYCLOPENTADIENYL)COBALT(III) HEXAFLUOROPHOSPHATE HAVE ALSO LOOKED AT
Show Me MORE Forms of Cobalt

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Cobalt

  • Hui Fan, Michael Keane, Prabhakar Singh, Minfang Han, Electrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cell, Journal of Power Sources, Volume 268, 5 December 2014
  • Panpan Xu, Ke Ye, Dianxue Cao, Jichun Huang, Tong Liu, Kui Cheng, Jinling Yin, Guiling Wang, Facile synthesis of cobalt manganese oxides nanowires on nickel foam with superior electrochemical performance, Journal of Power Sources, Volume 268, 5 December 2014
  • Hee-Je Kim, Su-Weon Kim, Chandu V.V.M. Gopi, Soo-Kyoung Kim, S. Srinivasa Rao, Myeong-Soo Jeong, Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode, Journal of Power Sources, Volume 268, 5 December 2014
  • Xuefei Gong, J.P. Cheng, Fu Liu, Li Zhang, Xiaobin Zhang, Nickel–Cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high-performance pseudocapacitors, Journal of Power Sources, Volume 267, 1 December 2014
  • Pouyan Paknahad, Masoud Askari, Milad Ghorbanzadeh, Application of sol–gel technique to synthesis of copper–cobalt spinel on the ferritic stainless steel used for solid oxide fuel cell interconnects, Journal of Power Sources, Volume 266, 15 November 2014
  • Alexander Schenk, Christoph Grimmer, Markus Perchthaler, Stephan Weinberger, Birgit Pichler, Christoph Heinzl, Christina Scheu, Franz-Andreas Mautner, Brigitte Bitschnau, Viktor Hacker, Platinum–cobalt catalysts for the oxygen reduction reaction in high temperature proton exchange membrane fuel cells – Long term behavior under ex-situ and in-situ conditions, Journal of Power Sources, Volume 266, 15 November 2014
  • Yaoming Xiao, Wei-Yan Wang, Shu-Wei Chou, Tsung-Wu Lin, Jeng-Yu Lin, In situ electropolymerization of polyaniline/cobalt sulfide decorated carbon nanotube composite catalyst toward triiodide reduction in dye-sensitized solar cells, Journal of Power Sources, Volume 266, 15 November 2014
  • Songying Liu, Ling Zhou, Liyuan Yao, Liya Chai, Li Li, Guo Zhang, Kankan, Keying Shi, One-pot reflux method synthesis of cobalt hydroxide nanoflake-reduced graphene oxide hybrid and their NOx gas sensors at room temperature, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • M.B. Lourenço, M.D. Carvalho, P. Fonseca, T. Gasche, G. Evans, M. Godinho, M.M. Cruz, Stability and magnetic properties of cobalt nitrides, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • Pankaj Kandwal, Prasanta Kumar Mohapatra, A highly efficient solvent system containing chlorinated cobalt dicarbollide in NPOE—Dodecane mixture for effective transport of radio-cesium from acidic wastes, Journal of Membrane Science, Volume 469, 1 November 2014
  • M.P. Popov, I.A. Starkov, S.F. Bychkov, A.P. Nemudry, Improvement of Ba0.5Sr0.5Co0.8Fe0.2O3-d functional properties by partial substitution of cobalt with tungsten, Journal of Membrane Science, Volume 469, 1 November 2014
  • Murat Rakap, Hydrogen generation from the hydrolytic dehydrogenation of ammonia borane using electrolessly deposited cobalt–phosphorus as reusable and cost-effective catalyst, Journal of Power Sources, Volume 265, 1 November 2014
  • L. Ajroudi, N. Mliki, L. Bessais, V. Madigou, S. Villain, Ch. Leroux, Magnetic, electric and thermal properties of cobalt ferrite nanoparticles, Materials Research Bulletin, Volume 59, November 2014
  • R. Ramchandra Kiran, R.A. Mondal, Sandhya Dwevedi, G. Markandeyulu, Structural, magnetic and magnetoelectric properties of Nb substituted Cobalt Ferrite, Journal of Alloys and Compounds, Volume 610, 15 October 2014
  • Jie Hou, Zhiwen Zhu, Jing Qian, Wei Liu, A new cobalt-free proton-blocking composite cathode La2NiO4+d–LaNi0.6Fe0.4O3-d for BaZr0.1Ce0.7Y0.2O3-d-based solid oxide fuel cells, Journal of Power Sources, Volume 264, 15 October 2014
  • Alamgir, Wasi Khan, Shabbir Ahmad, A.H. Naqvi, Formation of self-assembled spherical-flower like nanostructures of cobalt doped anatase TiO2 and its optical band-gap, Materials Letters, Volume 133, 15 October 2014
  • Mehdi Salehi, Mehdi Amirnasr, Soraia Meghdadi, Kurt Mereiter, Hamid R. Bijanzadeh, Ali Khaleghian, Synthesis, characterization, and X-ray crystal structure of cobalt(III) complexes with a N2O2-donor Schiff base and ancillary ligands. Spectral, antibacterial activity, and electrochemical studies, Polyhedron, Volume 81, 15 October 2014
  • T.L. Oliveira, L.H.G. Kalinke, E.J. Mascarenhas, R. Castro, F.T. Martins, J.R. Sabino, H.O. Stumpf, J. Ferrando, M. Julve, F. Lloret, D. Cangussu, Cobalt(II) and copper(II) assembling through a functionalized oxamate-type ligand, Polyhedron, Volume 81, 15 October 2014
  • Piotr Garczarek, Jan Janczak, Marek Duczmal, Jerzy Zon, The synthesis, structure and magnetic properties of two cobalt phosphonate salts, Polyhedron, Volume 81, 15 October 2014
  • Ankita Solanki, Sujit Baran Kumar, Syntheses and structural studies of cobalt(II), nickel(II), zinc(II) and cadmium(II) selenocyanate complexes with a tetradentate N4-donor ligand, Polyhedron, Volume 81, 15 October 2014

Recent Research & Development for Phosphates

  • Si-yao Guo, Song Han, Constructing a novel hierarchical 3D flower-like nano/micro titanium phosphate with efficient hydrogen evolution from water splitting, Journal of Power Sources, Volume 267, 1 December 2014
  • Aleksandra Matraszek, Irena Szczygieł, Bogdan Szczygieł, Hydrothermal synthesis and characterization of Na3Y(PO4)2 phosphate, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • Wanying Geng, Ge Zhu, Yurong Shi, Yuhua Wang, Luminescent characteristics of Dy3+ doped calcium zirconium phosphate CaZr4(PO4)6 (CZP) phosphor for warm-white LEDs, Journal of Luminescence, Volume 155, November 2014
  • Chun-Xiao Liu, Jun Xu, Wei-Nan Li, Xiao-Li Xu, Hai-Tao Guo, Wei Wei, Gen-Gen Wu, Yue Hu, Bo Peng, Fabrication and annealing optimization of oxygen-implanted Yb3+-doped phosphate glass planar waveguides, Optics & Laser Technology, Volume 63, November 2014
  • M.R. Muthumareeswaran, Gopal P. Agarwal, Feed concentration and pH effect on arsenate and phosphate rejection via polyacrylonitrile ultrafiltration membrane, Journal of Membrane Science, Volume 468, 15 October 2014
  • J. Massera, M. Vassallo-Breillot, B. Törngren, B. Glorieux, L. Hupa, Effect of CeO2 doping on thermal, optical, structural and in vitro properties of a phosphate based bioactive glass, Journal of Non-Crystalline Solids, Volume 402, 15 October 2014
  • Luciano Cordeiro, Robson Manoel Silva, Gabriele Matinatti de Pietro, Camila Pereira, Elivelton Alves Ferreira, Sidney J.L. Ribeiro, Younes Messaddeq, Fábia Castro Cassanjes, Gael Poirier, Thermal and structural properties of tantalum alkali-phosphate glasses, Journal of Non-Crystalline Solids, Volume 402, 15 October 2014
  • Xiaofeng Liang, Haijian Li, Cuiling Wang, Huijun Yu, Zhen Li, Shiyuan Yang, Physical and structural properties of calcium iron phosphate glass doped with rare earth, Journal of Non-Crystalline Solids, Volume 402, 15 October 2014
  • G. Venkateswara Rao, H.D. Shashikala, Optical, dielectric and mechanical properties of silver nanoparticle embedded calcium phosphate glass, Journal of Non-Crystalline Solids, Volume 402, 15 October 2014
  • Caijun Shi, Jianming Yang, Nan Yang, Yuan Chang, Effect of waterglass on water stability of potassium magnesium phosphate cement paste, Cement and Concrete Composites, Volume 53, October 2014