Cobalt Sulfate

CoSO4
CAS 10124-43-3


Product Product Code Order or Specifications
(2N) 99% Cobalt Sulfate CO-SAT-02 Contact American Elements
(3N) 99.9% Cobalt Sulfate CO-SAT-03 Contact American Elements
(4N) 99.99% Cobalt Sulfate CO-SAT-04 Contact American Elements
(5N) 99.999% Cobalt Sulfate CO-SAT-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
CoSO4 10124-43-3 29291995 24965 MFCD00149657 233-334-2 cobalt(2+) sulfate N/A [Co+2].[O-]S([O-])(=O)=O InChI=1S/Co.H2O4S/c;1-5(2,3)4/h;(H2,1,2,3,4)/q+2;/p-2 KTVIXTQDYHMGHF-UHFFFAOYSA-L

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
CoSO4 90.9982 Powder 1,195° C
(2,183° F)
N/A 5.45 g/cm3 90.905271 90.905273 Da 0 Safety Data Sheet

Sulfate IonCobalt Sulfate is a moderately water and acid soluble Cobalt source for uses compatible with sulfates.Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and deposited utilizing sputtering targets and evaporation materials for uses such as solar energy materials and fuel cells. Cobalt Sulfate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Cobalt(Co) atomic and molecular weight, atomic number and elemental symbolCobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195.Cobalt Bohr Model The number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar] 3d7 4s2The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental Cobalt Cobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit." For more information on cobalt, including properties, safety data, research, and American Elements' catalog of cobalt products, visit the Cobalt Information Center.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne]3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777 when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Danger
Hazard Statements H302-H317-H334-H341-H350i-H360F-H410
Hazard Codes T,N
Risk Codes 49-22-42/43-50/53
Safety Precautions 53-22-45-60-61
RTECS Number N/A
Transport Information UN 3077 9/PG 3
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity Health Hazard Environment-Hazardous to the aquatic environment    

COBALT SULFATE SYNONYMS
Cobaltous sulfate; Cobalt(2+) sulfate; Sulphuric acid, cobalt(2+) salt (1:1); Cobalt Brown; Cobalt(II) sulfate; Cobalt monosulfate;

CUSTOMERS FOR COBALT SULFATE HAVE ALSO LOOKED AT
Show Me MORE Forms of Cobalt

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Cobalt

  • J.M. Xu, J. Zhang, B.B. Wang, F. Liu, Shape-regulated synthesis of cobalt oxide and its gas-sensing property, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Zhuang-hao Zheng, Ping Fan, Guang-xing Liang, Dong-ping Zhang, Influence of deposition temperature on the microstructure and thermoelectric properties of antimonide cobalt thin films prepared by ion beam sputtering deposition, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Dragoslav Ilić, Verica V. Jevtić, Miorad M. Vasojević, Miodrag Ž. Jelić, Ivana D. Radojević, Ljiljana R. Čomić, Slađana B. Novaković, Goran A. Bogdanović, Ivan Potočňák, Srećko R. Trifunović, Stereospecific ligands and their complexes. Part XXI. Synthesis, characterization, circular dichroism and antimicrobial activity of cobalt(III) complexes with some edda-type of ligands. Crystal structure of potassium-Δ-(−)589-s-cis-oxalato-(S,S)-ethylenediamine-N,N′-di-(2-propanoato)-cobaltate(III)-semihydrate, K-Δ-(−)589-s-cis-[Co(S,S-eddp)(ox)]·0.5H2O, Polyhedron, Volume 85, 8 January 2015
  • Carmen Cretu, Ramona Tudose, Liliana Cseh, Wolfgang Linert, Eleftherios Halevas, Antonios Hatzidimitriou, Otilia Costisor, Athanasios Salifoglou, Schiff base coordination flexibility toward binary cobalt and ternary zinc complex assemblies. The case of the hexadentate ligand N,N′-bis[(2-hydroxybenzilideneamino)-propyl]-piperazine, Polyhedron, Volume 85, 8 January 2015
  • Michael Bubnov, Nina Skorodumova, Alla Arapova, Natalya Smirnova, Artem Bogomyakov, Maxim Samsonov, Vladimir Cherkasov, Gleb Abakumov, New bis-o-semiquinonato cobalt complexes with 1,10-phenanthroline ligands, Polyhedron, Volume 85, 8 January 2015
  • Mahendra Ghosh, Manas Layek, Michel Fleck, Rajat Saha, Debasis Bandyopadhyay, Synthesis, crystal structure and antibacterial activities of mixed ligand copper(II) and cobalt(II) complexes of a NNS Schiff base, Polyhedron, Volume 85, 8 January 2015
  • Kihun Jang, Seongil Yu, Sung-Hyeon Park, Hak-Sung Kim, Heejoon Ahn, Intense pulsed light-assisted facile and agile fabrication of cobalt oxide/nickel cobaltite nanoflakes on nickel-foam for high performance supercapacitor applications, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • Ying Deng, Xiang Xiong, J.P. Zou, Ling Deng, M.J. Tu, Control of morphology and structure for β-Co nanoparticles from cobalt oxalate and research on its phase-change mechanism, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • G. Vignesh, Y. Manojkumar, K. Sugumar, S. Arunachalam, Spectroscopic investigation on the interaction of some polymer–cobalt(III) complexes with serum albumins, Journal of Luminescence, Volume 157, January 2015
  • Poonam Pahuja, R.K. Kotnala, R.P. Tandon, Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite, Journal of Alloys and Compounds, Volume 617, 25 December 2014

Recent Research & Development for Sulfates

  • Marta García-Maté, Angeles G. De la Torre, Laura León-Reina, Enrique R. Losilla, Miguel A.G. Aranda, Isabel Santacruz, Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement, Cement and Concrete Composites, Volume 55, January 2015
  • Jin Gi Hong, Yongsheng Chen, Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide, Journal of Membrane Science, Volume 473, 1 January 2015
  • Jie-Cen Zhong, Fang Wan, Yan-Qiong Sun, Yi-Ping Chen, Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid, Journal of Solid State Chemistry, Volume 221, January 2015
  • Haihan Zhou, Gaoyi Han, Dongying Fu, Yunzhen Chang, Yaoming Xiao, Hua-Jin Zhai, Petal-shaped poly(3,4-ethylenedioxythiophene)/sodium dodecyl sulfate-graphene oxide intercalation composites for high-performance electrochemical energy storage, Journal of Power Sources, Volume 272, 25 December 2014
  • Edgar Ventosa, Marcel Skoumal, Francisco Javier Vázquez, Cristina Flox, Joan Ramon Morante, Operando studies of all-vanadium flow batteries: Easy-to-make reference electrode based on silver–silver sulfate, Journal of Power Sources, Volume 271, 20 December 2014
  • Xiaoshi Lang, Dianlong Wang, Chiyu Hu, Shenzhi Tang, Junsheng Zhu, Chenfeng Guo, The use of nanometer tetrabasic lead sulfate as positive active material additive for valve regulated lead-acid battery, Journal of Power Sources, Volume 270, 15 December 2014
  • L. Liu, J.P. Cheng, J. Zhang, F. Liu, X.B. Zhang, Effects of dodecyl sulfate and nitrate anions on the supercapacitive properties of α-Co(OH)2, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • J. Stroh, M.-C. Schlegel, E.F. Irassar, B. Meng, F. Emmerling, Applying high resolution SyXRD analysis on sulfate attacked concrete field samples, Cement and Concrete Research, Volume 66, December 2014
  • Neda Mobasher, Susan A. Bernal, Oday H. Hussain, David C. Apperley, Hajime Kinoshita, John L. Provis, Characterisation of Ba(OH)2–Na2SO4–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes, Cement and Concrete Research, Volume 66, December 2014
  • Mark Whittaker, Maciej Zajac, Mohsen Ben Haha, Frank Bullerjahn, Leon Black, The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends, Cement and Concrete Research, Volume 66, December 2014