trans-Dichlorobis(ethylenediamine)cobalt(III) Chloride

CAS 14040-33-6

Product Product Code Order or Specifications
(2N) 99% trans-Dichlorobis(ethylenediamine)cobalt(III) Chloride CO-OM-02 Contact American Elements
(3N) 99.9% trans-Dichlorobis(ethylenediamine)cobalt(III) Chloride CO-OM-03 Contact American Elements
(4N) 99.99% trans-Dichlorobis(ethylenediamine)cobalt(III) Chloride CO-OM-04 Contact American Elements
(5N) 99.999% trans-Dichlorobis(ethylenediamine)cobalt(III) Chloride CO-OM-05 Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name SMILES
C4H16Cl3CoN4 14040-33-6 46240574 166987 MFCD00054234 N/A cobalt(3+); ethane-1,2-diamine; trichloride C(CN)N.C(CN)N.[Cl-].[Cl-].[Cl-].[Co+3] InChI=1S/2C2H8N2.3ClH.Co/c2*3-1-2-4;;;;/h2*1-4H2;3*1H;/q;;;;;+3/p-3 GVMSQWCTZLHSQH-UHFFFAOYSA-K

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
C4H16Cl3CoN4 285.49 Powder, crystals, and chunks 237-239 °C N/A N/A 283.97725 283.97725 0 Safety Data Sheet

Chloride Iontrans-Dichlorobis(ethylenediamine)cobalt(III) Chloride is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Cobalt(Co) atomic and molecular weight, atomic number and elemental symbolCobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195.Cobalt Bohr Model The number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar] 3d7 4s2The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental Cobalt Cobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit." For more information on cobalt, including properties, safety data, research, and American Elements' catalog of cobalt products, visit the Cobalt Information Center.

Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)

Trans-Dichlorobis(ethylenediamine)cobalt(1+) chloride; Cobalt(1+), dichlorobis[1,2-ethanediamine-N,N']-, chloride, (OC-6-12)-

Show Me MORE Forms of Cobalt

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Cobalt

  • Changbai Liu, Xiao Chi, Xingyi Liu, Shenglei Wang, Comparison of ethanol sensitivity based on cobalt–indium combined oxide nanotubes and nanofibers, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • E.M.S. Barbieri, E.P.C. Lima, M.F.F. Lelis, M.B.J.G. Freitas, Recycling of cobalt from spent Li-ion batteries as ß-Co(OH)2 and the application of Co3O4 as a pseudocapacitor, Journal of Power Sources, Volume 270, 15 December 2014
  • Baiju Vidyadharan, Radhiyah Abd Aziz, Izan Izwan Misnon, Gopinathan M. Anil Kumar, Jamil Ismail, Mashitah M. Yusoff, Rajan Jose, High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode, Journal of Power Sources, Volume 270, 15 December 2014
  • Chien-Te Hsieh, Yu-Fu Chen, Chun-Ting Pai, Chung-Yu Mo, Synthesis of lithium nickel cobalt manganese oxide cathode materials by infrared induction heating, Journal of Power Sources, Volume 269, 10 December 2014
  • John Wang, Justin Purewal, Ping Liu, Jocelyn Hicks-Garner, Souren Soukazian, Elena Sherman, Adam Sorenson, Luan Vu, Harshad Tataria, Mark W. Verbrugge, Degradation of lithium ion batteries employing graphite negatives and nickel–cobalt–manganese oxide + spinel manganese oxide positives: Part 1, aging mechanisms and life estimation, Journal of Power Sources, Volume 269, 10 December 2014
  • E.M.S. Barbieri, E.P.C. Lima, S.J. Cantarino, M.F.F. Lelis, M.B.J.G. Freitas, Recycling of spent ion-lithium batteries as cobalt hydroxide, and cobalt oxide films formed under a conductive glass substrate, and their electrochemical properties, Journal of Power Sources, Volume 269, 10 December 2014
  • Guiqiang Wang, Juan Zhang, Shuai Kuang, Shaomin Liu, Shuping Zhuo, The production of cobalt sulfide/graphene composite for use as a low-cost counter-electrode material in dye-sensitized solar cells, Journal of Power Sources, Volume 269, 10 December 2014
  • Mohamed Bakr Mohamed, M. Yehia, Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • R.K. Panda, R. Muduli, S.K. Kar, D. Behera, Dielectric relaxation and conduction mechanism of cobalt ferrite nanoparticles, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • J.J. Ruan, C.P. Wang, S.Y. Yang, R. Kainuma, X.J. Liu, New cobalt-based intermetallic compound Co2VMn with B2 structure and phase equilibria in the Co–V–Mn ternary system, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Hui Fan, Michael Keane, Prabhakar Singh, Minfang Han, Electrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cell, Journal of Power Sources, Volume 268, 5 December 2014
  • Panpan Xu, Ke Ye, Dianxue Cao, Jichun Huang, Tong Liu, Kui Cheng, Jinling Yin, Guiling Wang, Facile synthesis of cobalt manganese oxides nanowires on nickel foam with superior electrochemical performance, Journal of Power Sources, Volume 268, 5 December 2014
  • Hee-Je Kim, Su-Weon Kim, Chandu V.V.M. Gopi, Soo-Kyoung Kim, S. Srinivasa Rao, Myeong-Soo Jeong, Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode, Journal of Power Sources, Volume 268, 5 December 2014
  • Xuefei Gong, J.P. Cheng, Fu Liu, Li Zhang, Xiaobin Zhang, Nickel–Cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high-performance pseudocapacitors, Journal of Power Sources, Volume 267, 1 December 2014
  • Pouyan Paknahad, Masoud Askari, Milad Ghorbanzadeh, Application of sol–gel technique to synthesis of copper–cobalt spinel on the ferritic stainless steel used for solid oxide fuel cell interconnects, Journal of Power Sources, Volume 266, 15 November 2014
  • Alexander Schenk, Christoph Grimmer, Markus Perchthaler, Stephan Weinberger, Birgit Pichler, Christoph Heinzl, Christina Scheu, Franz-Andreas Mautner, Brigitte Bitschnau, Viktor Hacker, Platinum–cobalt catalysts for the oxygen reduction reaction in high temperature proton exchange membrane fuel cells – Long term behavior under ex-situ and in-situ conditions, Journal of Power Sources, Volume 266, 15 November 2014
  • Yaoming Xiao, Wei-Yan Wang, Shu-Wei Chou, Tsung-Wu Lin, Jeng-Yu Lin, In situ electropolymerization of polyaniline/cobalt sulfide decorated carbon nanotube composite catalyst toward triiodide reduction in dye-sensitized solar cells, Journal of Power Sources, Volume 266, 15 November 2014
  • Robert Iano?, Highly sinterable cobalt ferrite particles prepared by a modified solution combustion synthesis, Materials Letters, Volume 135, 15 November 2014
  • Songying Liu, Ling Zhou, Liyuan Yao, Liya Chai, Li Li, Guo Zhang, Kankan, Keying Shi, One-pot reflux method synthesis of cobalt hydroxide nanoflake-reduced graphene oxide hybrid and their NOx gas sensors at room temperature, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • M.B. Lourenço, M.D. Carvalho, P. Fonseca, T. Gasche, G. Evans, M. Godinho, M.M. Cruz, Stability and magnetic properties of cobalt nitrides, Journal of Alloys and Compounds, Volume 612, 5 November 2014

Recent Research & Development for Chlorides

  • Qingli Li, Hongying Liu, Yiting Wang, Zhen Sun, Fangmin Guo, Jianzhong Zhu, Methyl green and nitrotetrazolium blue chloride co-expression in colon tissue: A hyperspectral microscopic imaging analysis, Optics & Laser Technology, Volume 64, December 2014
  • Ram Kripal, Manju Singh, EPR and optical study of Mn2+ doped monohydrated dipotassium stannic chloride, Journal of Alloys and Compounds, Volume 613, 15 November 2014
  • S. Imran U. Shah, Andrew L. Hector, John R. Owen, Redox supercapacitor performance of nanocrystalline molybdenum nitrides obtained by ammonolysis of chloride- and amide-derived precursors, Journal of Power Sources, Volume 266, 15 November 2014
  • N.S. Benerji, Bijendra Singh, Performance of axicon based conical resonator (ABCR) with a xenon chloride (XeCl) excimer laser, Optics Communications, Volume 331, 15 November 2014
  • M. Torres-Luque, E. Bastidas-Arteaga, F. Schoefs, M. Sánchez-Silva, J.F. Osma, Non-destructive methods for measuring chloride ingress into concrete: State-of-the-art and future challenges, Construction and Building Materials, Volume 68, 15 October 2014
  • Mickael Saillio, Véronique Baroghel-Bouny, Fabien Barberon, Chloride binding in sound and carbonated cementitious materials with various types of binder, Construction and Building Materials, Volume 68, 15 October 2014
  • Andrew J. Blok, Rinkubahen Chhasatia, Jessirie Dilag, Amanda V. Ellis, Surface initiated polydopamine grafted poly([2-(methacryoyloxy)ethyl]trimethylammonium chloride) coatings to produce reverse osmosis desalination membranes with anti-biofouling properties, Journal of Membrane Science, Volume 468, 15 October 2014
  • Hesam Madani, Alireza Bagheri, Tayebeh Parhizkar, Amirmaziar Raisghasemi, Chloride penetration and electrical resistivity of concretes containing nanosilica hydrosols with different specific surface areas, Cement and Concrete Composites, Volume 53, October 2014
  • Mathias Maes, Nele De Belie, Resistance of concrete and mortar against combined attack of chloride and sodium sulphate, Cement and Concrete Composites, Volume 53, October 2014
  • . Castañeda, A. Maldonado, J. Vega Pérez, M. de la L. Olvera, C. Torres-Torres, Electrical and optical properties of nanostructured indium doped zinc oxide thin films deposited by ultrasonic chemical spray technique, starting from zinc acetylacetonate and indium chloride, Materials Science in Semiconductor Processing, Volume 26, October 2014