Skip to Page Content

Copper-63 Metal Isotope

63Cu34


Product Product Code Request Quote
Copper-63 Metal CU-M-63-ISO Request Quote

PROPERTIES Formula N ENSDF Citation Half Life Jp Sn (keV) Sp (keV) Abundance
63Cu 29 NDS 64,815 (1991) stable 3/2- 10853  4 6122.44  7 69.17  3%


Copper 63 Metal (Copper-63) is a stable (non-radioactive) isotope of Copper. See above table for ENSDF Citation and Half Life. It is both naturally occurring and a produced by fission. Copper 63 Metal is one of over 250 stable Metallic isotopes produced by American Elements for biological and biomedical labeling, as target materials and other applications. Copper Metal 63 additionally has special application in noninvasive studies of copper metabolism and requirements, Studies of congenital disorders and body kinetics in gastrointestinal diseases, and investigation of role in maintaining integrity of tissue such as myocardium. Copper Metal is also available in ultra high purity and as nanoparticles. For thin film applications it is available as rod, pellets, pieces, granules and sputtering targets and as either an ingot or powder. Copper Metal 63 isotopic material is generally immediately available. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Copper Bohr ModelCopper (Cu) atomic and molecular weight, atomic number and elemental symbolCopper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar] 3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a red-orange metallic luster appearance. Elemental Copper Of all pure metals, only silver has a higher electrical conductivity.The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus." Cyprus, a Mediterranean island, was known as an ancient source of mined copper. For more information on copper, including properties, safety data, research, and American Elements' catalog of copper products, visit the Copper element page.


CUSTOMERS FOR COPPER-63 METAL ISOTOPE HAVE ALSO LOOKED AT
Copper Oxide Copper Nitrate Copper Pellets Copper Acetylacetonate Copper Acetate
Copper Tin Silver Alloy Copper Metal Copper Oxide Pellets Copper Wire Copper Foil
Copper Chloride Copper Sputtering Target Copper Powder Copper Nanoparticles Aluminum Magnesium Copper Alloy
Show Me MORE Forms of Copper

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Copper

  • The Environmental Legacy of Copper Metallurgy and Mongol Silver Smelting Recorded in Yunnan Lake Sediments. Aubrey L. Hillman, Mark B. Abbott, JunQing Yu, Daniel J. Bain, and TzeHuey Chiou-Peng. Environ. Sci. Technol.: February 16, 2015
  • Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. Wei-Wei Wang, Pei-Pei Du, Shi-Hui Zou, Huan-Yu He, Rui-Xing Wang, Zhao Jin, Shuo Shi, Yuying Huang, Rui Si, Qi-Sheng Song, Chun-Jiang Jia, and Chun-Hua Yan. ACS Catal.: February 13, 2015
  • NO Decomposition Activated by Preadsorption of O2 onto Copper Cluster Anions. Shinichi Hirabayashi and Masahiko Ichihashi. J. Phys. Chem. C: February 12, 2015
  • Synthesis of Vinyl Trifluoromethyl Thioethers via Copper-Mediated Trifluoromethylthiolation of Vinyl Bromides. Yangjie Huang, Jianping Ding, Chuyi Wu, Huidong Zheng, and Zhiqiang Weng. J. Org. Chem.: 42047
  • Renal Clearance and Degradation of Glutathione-coated Copper Nanoparticles. Jie Zheng, Shengyang Yang, Shasha Sun, Chen Zhou, Guiyang Hao, Jinbin Liu, Saleh Ramezani, Mengxiao Yu, and Xiankai Sun. Bioconjugate Chem.: February 12, 2015
  • Copper-Catalyzed N-Cyanation of Sulfoximines by AIBN. Fan Teng, Jin-Tao Yu, Zhou Zhou, Haoke Chu, and Jiang Cheng. J. Org. Chem.: 42045
  • Aggregation, dissolution and transformation of copper nanoparticles in natural waters. Jon Robert Conway, Adeyemi S. Adeleye, Jorge L Gardea-Torresdey, and Arturo A. Keller. Environ. Sci. Technol.: February 9, 2015
  • Lewis Acid-Induced Change from Four- to Two-Electron Reduction of Dioxygen Catalyzed by Copper Complexes Using Scandium Triflate. Saya Kakuda, Clarence Rolle, Kei Ohkubo, Maxime A. Siegler, Kenneth D. Karlin, and Shunichi Fukuzumi. J. Am. Chem. Soc.: February 7, 2015
  • Tris(2,2'-azobispyridine) Complexes of Copper(II): X-ray Structures, Reactivities, and the Radical Nonradical Bis(ligand) Analogues. Suvendu Maity, Suman Kundu, Thomas Weyhermüller, and Prasanta Ghosh. Inorg. Chem.: February 4, 2015
  • Proton Conduction and Long-Range Ferrimagnetic Ordering in Two Isostructural Copper(II) Mesoxalate Metal–Organic Frameworks. Beatriz Gil-Hernández, Stanislav Savvin, Gamall Makhloufi, Pedro Núñez, Christoph Janiak, and Joaquín Sanchiz. Inorg. Chem.: February 4, 2015