Copper Crucibles

High Purity Cu Metal Crucibles
CAS 7440-50-8


Product Product Code Order or Specifications
(2N) 99% Copper Crucibles CU-M-02-CR Contact American Elements
(3N) 99.9% Copper Crucibles CU-M-03-CR Contact American Elements
(3N5) 99.95% Copper Crucibles CU-M-35-CR Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Cu 7440-50-8 23978 MFCD00010965 231-159-6 N/A [Cu] InChI=1S/Cu RYGMFSIKBFXOCR-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
63.55 Reddish Metal 8.96 g/cm3 1085°C 2562°C 401
W·m-1·K-1
1.673 μΩ-cm (20°C) 1.90 Paulings 0.39
kJ/kg K
300.4 kJ·mol-1 13.26 kJ·mol-1 Safety Data Sheet

Ultra High Purity (99.95%) Copper CruciblesAmerican Elements specializes in supplying Copper Crucibles with a variety of dimensions including round, in numerous standard diameters and wall thicknesses. Custom configurations are available. Materials include most metals including most transition, refractory and precious metals and other advanced materials. Crucibles can also be produced from custom materials and alloys for commercial and research applications and for new proprietary technologies. Other available shapes include tubes, bar or plate form, as well as custom machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots ) and in the form of solutions and organometallics . We also produce Copper as rod, pellets, powder, pieces, granules, ingot, wire, and in compound forms, such as oxide. Other shapes are available by request.

Copper Bohr ModelCopper (Cu) atomic and molecular weight, atomic number and elemental symbolCopper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar] 3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC.In its elemental form, copper has a red-orange metallic luster appearance. Elemental Copper Of all pure metals, only silver has a higher electrical conductivity.The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus." Cyprus, a Mediterranean island, was known as an ancient source of mined copper. For more information on copper, including properties, safety data, research, and American Elements' catalog of copper products, visit the Copper Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H228-H400
F
11
16
GL5325000
UN 3089 4.1/PG 2
3
Flame-Flammables Environment-Hazardous to the aquatic environment      

CUSTOMERS FOR COPPER CRUCIBLES HAVE ALSO LOOKED AT
Show Me MORE Forms of Copper

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Copper

  • Wen-Tong Chen, Qiu-Yan Luo, Ya-Ping Xu, Yan-Kang Dai, Shan-Lin Huang, Pei-Yu Guo, Hydrothermal synthesis, crystal structure and properties of a thermally stable dysprosium porphyrin with a three-dimensional porous open framework, Inorganic Chemistry Communications, Volume 49, November 2014
  • Yingjie Zhang, Mohan Bhadbhade, Nicholas Scales, Inna Karatchevtseva, Jason R. Price, Kim Lu, Gregory R. Lumpkin, Dysprosium complexes with mono-/di-carboxylate ligands—From simple dimers to 2D and 3D frameworks, Journal of Solid State Chemistry, Volume 219, November 2014
  • Yan Sui, Xiao-Niu Fang, Rong-Hua Hu, Jia Li, Dong-Sheng Liu, A new type of multifunctional single ionic dysprosium complex based on chiral salen-type Schiff base ligand, Inorganica Chimica Acta, Volume 423, Part A, 1 November 2014
  • Yan Wang, Bin Cui, Lulu Zhang, Zhenyu Hu, Yaoyu Wang, Phase composition, microstructure, and dielectric properties of dysprosium-doped Ba(Zr0.1Ti0.9)O3-based Y5V ceramics with high permittivity, Ceramics International, Volume 40, Issue 8, Part A, September 2014
  • M.F. Al-Kuhaili, S.M.A. Durrani, Structural and optical properties of dysprosium oxide thin films, Journal of Alloys and Compounds, Volume 591, 5 April 2014
  • Huijie Zhang, Ruiqing Fan, Wei Chen, Xubin Zheng, Kai Li, Ping Wang, Yulin Yang, Two new dysprosium–organic frameworks contaning rigid dicarboxylate ligands: Synthesis and effect of solvents on the luminescent properties, Journal of Luminescence, Volume 143, November 2013
  • Stuart K. Langley, Boujemaa Moubaraki, Keith S. Murray, Trinuclear, octanuclear and decanuclear dysprosium(III) complexes: Synthesis, structural and magnetic studies, Polyhedron, Volume 64, 12 November 2013
  • Mengsi Yang, Jianhua Jin, Guiqing Xu, Fengling Cui, Hongxia Luo, A naproxen complex of dysprosium intercalates into calf thymus DNA base pairs, Chemical Physics, Volume 428, 15 January 2014
  • Zhi-Gang Wang, Jing Lu, Chun-Yan Gao, Chao Wang, Jin-Lei Tian, Wen Gu, Xin Liu, Shi-Ping Yan, Single-ion magnet behavior of a new mononuclear dysprosium complex, Inorganic Chemistry Communications, Volume 27, January 2013
  • Brian J. Jaques, Daniel D. Osterberg, Gordon A. Alanko, Sumit Tamrakar, Cole R. Smith, Michael F. Hurley, Darryl P. Butt, In situ characterization of the nitridation of dysprosium during mechanochemical processing, Journal of Alloys and Compounds, Volume 619, 15 January 201