Skip to Page Content

Dysprosium Trifluoromethanesulfonate

(CF3SO3)3Dy
CAS 139177-62-1


Product Product Code Request Quote
(2N) 99% Dysprosium Trifluoromethanesulfonate DY-CFS-02 Request Quote
(2N5) 99.5% Dysprosium Trifluoromethanesulfonate DY-CFS-025 Request Quote
(3N) 99.9% Dysprosium Trifluoromethanesulfonate DY-CFS-03 Request Quote
(3N5) 99.95% Dysprosium Trifluoromethanesulfonate DY-CFS-035 Request Quote
(4N) 99.99% Dysprosium Trifluoromethanesulfonate DY-CFS-04 Request Quote
(5N) 99.999% Dysprosium Trifluoromethanesulfonate DY-CFS-05 Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
C3DyF9O9S3 139177-62-1 24866655 9938788 MFCD00209583 N/A dysprosium(3+); trifluoromethanesulfonate N/A [Dy+3].FC(F)(F)S([O-])(=O)=O.FC(F)(F)S([O-])(=O)=O.FC(F)(F)S([O-])(=O)=O InChI=1S/3CHF3
O3S.Dy/c3*2-1(3,4)8(5,6)7;/h3*(
H,5,6,7);/q;;;+3/p-3
XSVCYDUEICANRJ-UHFFFAOYSA-K

PROPERTIES Compound Formula Mol. Wt. Appearance Density Exact Mass Monoisotopic Mass Charge MSDS
(CF3SO3)3Dy 609.71 White to off-white powder or crystals N/A 610.785243 610.785243 0 Safety Data Sheet

Dysprosium Trifluoromethanesulfonate is one of numerous organo-metallic compounds (also known as metalorganic, organo-inorganic and Organo-Metallic Packaging, Lab Quantitymetallo-organic compounds) sold by American Elements under the tradename AE Organo-Metallics™ for uses requiring non-aqueous solubility such as recent solar energy and water treatment applications. Similar results can sometimes also be achieved with Nanoparticles and by thin film deposition. Note American Elements additionally supplies many materials as solutions. Dysprosium Trifluoromethanesulfonate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. Additional technical, research and safety information is available.

Dysprosium Bohr ModelDysprosium Element SymbolDysprosium (atomic symbol: Dy, atomic number: 66) is a Block F, Group 3, Period 6 element with an atomic radius of 162.5. The number of electrons in each of dysprosium's shells is [2, 8, 18, 28, 8, 2] and its electron configuration is [Xe] 4f10 6s2. The dysprosium atom has an atomic radius of 178 pm and a Van der Waals radius of 229 pm. Dysprosium was first discovered by Paul Emile Lecoq de Boisbaudran in 1886.In its elemental form, dysprosium has a silvery-white appearance. It is a member of the lanthanide or rare earth series of elements and, along with holmium, has the highest magnetic strength of all other elements on the periodic table, especially at low temperatures. Elemental Dysprosium PictureDysprosium is found in various minerals including bastnäsite, blomstrandine, euxenite, fergusonite, gadolinite, monazite, polycrase and xenotime. It is not found in nature as a free element. The element name originates from the Greek word dysprositos, meaning hard to get at. For more information on dysprosium, including properties, satefy data, research, and American Elements' catalog of dysprosium products, visit the Dysprosium element page.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H315-H319-H335
Hazard Codes Xi
Risk Codes 36/37/38
Safety Precautions 26-36
RTECS Number N/A
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity        

DYSPROSIUM TRIFLUOROMETHANESULFONATE SYNONYMS
Dysprosium(III) trifluoromethanesulfonate

<
CUSTOMERS FOR DYSPROSIUM TRIFLUOROMETHANESULFONATE HAVE ALSO LOOKED AT
Dysprosium Wire Dysprosium Oxide Pellets Dysprosium Erbium Aluminum alloy Dysprosium Sulfate Dysprosium Sputtering Target
Dysprosium Nitrate Dysprosium Metal Dysprosium Scandium Oxide Dysprosium Pellets Dysprosium Acetate Solution
Dysprosium Nanoparticles Dysprosium Foil Dysprosium Acetylacetonate Dysprosium Chloride Dysprosium Oxide
Show Me MORE Forms of Dysprosium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Dysprosium

  • Field-Induced Multiple Relaxation Mechanism of CoIII2DyIII Compound with the Dysprosium Ion in a Low-Symmetrical Environment. Shufang Xue, Liviu Ungur, Yun-Nan Guo, Jinkui Tang, and Liviu F. Chibotaru. Inorg. Chem.: November 13, 2014
  • Mononuclear and Tetranuclear Compounds of Yttrium and Dysprosium Ligated by a Salicylic Schiff-Base Derivative: Synthesis, Photoluminescence, and Magnetism. Munendra Yadav, Valeriu Mereacre, Sergei Lebedkin, Manfred M. Kappes, Annie K. Powell, and Peter W. Roesky. Inorg. Chem.: September 19, 2014
  • Crystal Field Splitting of the Ground State of Terbium(III) and Dysprosium(III) Complexes with a Triimidazolyl Tripod Ligand and an Acetate Determined by Magnetic Analysis and Luminescence. Seira Shintoyo, Keishiro Murakami, Takeshi Fujinami, Naohide Matsumoto, Naotaka Mochida, Takayuki Ishida, Yukinari Sunatsuki, Masayuki Watanabe, Masanobu Tsuchimoto, Jerzy Mrozinski, Cecilia Coletti, and Nazzareno Re. Inorg. Chem.: September 9, 2014
  • Local Coordination Geometry Perturbed ?-Diketone Dysprosium Single-Ion Magnets. Jing Zhu, Changzheng Wang, Fang Luan, Tianqi Liu, Pengfei Yan, and Guangming Li. Inorg. Chem.: August 19, 2014
  • Hexanuclear, HeteroMetallic, Ni3Ln3 Complexes Possessing O-Capped Homo- and HeteroMetallic Structural Subunits: SMM Behavior of the Dysprosium Analogue. Joydeb Goura, Rogez Guillaume, Eric Rivière, and Vadapalli Chandrasekhar. Inorg. Chem.: July 22, 2014
  • Structural and Electronic Dependence of the Single-Molecule-Magnet Behavior of Dysprosium(III) Complexes. Victoria E. Campbell, Hélène Bolvin, Eric Rivière, Regis Guillot, Wolfgang Wernsdorfer, and Talal Mallah. Inorg. Chem.: February 17, 2014
  • Synthesis and Characterization of Dysprosium-Doped ZnO Nanoparticle for Photocatalysis of a Textile Dye under Visible Light Irradiation. Alireza Khataee, Reza Darvishi Cheshmeh Soltani, Younes Hanifehpour, Mahdie Safarpour, Habib Gholipour Ranjbar, and Sang Woo Joo. Ind. Eng. Chem. Res.: January 17, 2014
  • Pentanuclear Heterometallic {Ni2Ln3} (Ln = Gd, Dy, Tb, Ho) Assemblies. Single-Molecule Magnet Behavior and Multistep Relaxation in the Dysprosium Derivative. Vadapalli Chandrasekhar, Prasenjit Bag, Wolfgang Kroener, Klaus Gieb, and Paul Müller. Inorg. Chem.: November 7, 2013
  • Influence of Intramolecular f-f Interactions on Nuclear Spin Driven Quantum Tunneling of Magnetizations in Quadruple-Decker Phthalocyanine Complexes Containing Two Terbium or Dysprosium Magnetic Centers. Takamitsu Fukuda, Kazuya Matsumura, and Naoto Ishikawa. J. Phys. Chem. A: September 4, 2013
  • Synthesis, Structure, and Magnetic Properties of a New Family of Tetra-nuclear {Mn2IIILn2}(Ln = Dy, Gd, Tb, Ho) Clusters With an Arch-Type Topology: Single-Molecule Magnetism Behavior in the Dysprosium and Terbium Analogues. Vadapalli Chandrasekhar, Prasenjit Bag, Manfred Speldrich, Jan van Leusen, and Paul Kögerler. Inorg. Chem.: April 24, 2013

Recent Research & Development for Sulfur

  • Permselective Graphene Oxide Membrane for High-Stable and Anti-Self-Discharge Lithium-Sulfur Batteries. Jia-Qi Huang, Ting-Zhou Zhuang, Qiang Zhang, Hong-Jie Peng, Cheng-Meng Chen, and Fei Wei. ACS Nano: February 16, 2015
  • Sulfur Derivatives of the Natural Polyarsenical Arsenicin A: Biologically Active, OrganoMetallic ArsenicSulfur Cages Related to the Minerals Realgar and Uzonite. Di Lu, Sundaram Arulmozhiraja, Michelle L. Coote, A. David Rae, Geoff Salem, Anthony C. Willis, and S. Bruce Wild , Shirine Benhenda, Valerie Lallemand Breitenbach, and Hugues de Thé , Xiaoyi Zhai, Philip J. Hogg, and Pierre J. Dilda. Organometallics: February 11, 2015
  • First-Principles Study of Redox End-Members in Lithium-Sulfur Batteries. Haesun Park, Hyun Seung Koh, and Donald J. Siegel. J. Phys. Chem. C: February 9, 2015
  • Mesoporous Carbon Interlayers with Tailored Pore Volume as Polysulfide Reservoir for High-Energy Lithium–Sulfur Batteries. Juan Balach, Tony Jaumann, Markus Klose, Steffen Oswald, Jürgen Eckert, and Lars Giebeler. J. Phys. Chem. C: February 5, 2015
  • Distribution of DNA Adducts and Corresponding Tissue Damage of Sprague–Dawley Rats with Percutaneous Exposure to Sulfur Mustard. Lijun Yue, Yajiao Zhang, Jia Chen, Zengming Zhao, Qin Liu, Ruiqin Wu, Lei Guo, Jun He, Jun Zhao, Jianwei Xie, and Shuangqing Peng. Chem. Res. Toxicol.: February 3, 2015
  • Mutual Inhibition between Catalytic Impurities of Sulfur and Those of Calcium in Coke during Carbon–Air and Carbon–CO2 Reactions. Jin Xiao, Qifan Zhong, Fachuang Li, Jindi Huang, Yanbin Zhang, and Bingjie Wang. Energy Fuels: February 3, 2015
  • Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-Ion and Li-Sulfur Batteries. Heejoon Moon, Toshihiko Mandai, Ryoichi Tatara, Kazuhide Ueno, Azusa Yamazaki, Kazuki Yoshida, Shiro Seki, Kaoru Dokko, and Masayoshi Watanabe. J. Phys. Chem. C: February 2, 2015
  • Identification, Synthesis, and Characterization of Novel Sulfur-Containing Volatile Compounds from the In-Depth Analysis of Lisbon Lemon Peels (Citrus limon L. Burm. f. cv. Lisbon). Robert J. Cannon, Arkadiusz Kazimierski, Nicole L. Curto, Jing Li, Laurence Trinnaman, Adam J. Ja?czuk, David Agyemang, Neil C. Da Costa, and Michael Z. Chen. J. Agric. Food Chem.: January 31, 2015
  • Mineralogical and Elemental Analysis of Some High-Sulfur Indian Paleogene Coals: A Statistical Approach. Binoy K. Saikia, Peipei Wang, Ananya Saikia, Hongjian Song, Jingjing Liu, Jianpeng Wei, and Upendra N. Gupta. Energy Fuels: January 29, 2015
  • Ionic Liquid–Derived Nitrogen–Enriched Carbon/Sulfur Composite Cathodes with Hierarchical Microstructure – A Step Toward Durable High Energy and High Performance Lithium–Sulfur Batteries. Artur Schneider, Christoph Weidmann, Christian Suchomski, Heino Sommer, Jürgen Janek, and Torsten Brezesinski. Chem. Mater.: January 29, 2015