Skip to Page Content

Iron Chromate

Fe2(CrO4)3
CAS 10294-52-7


Product Product Code Request Quote
(2N) 99% Iron Chromate FE-CRAT-02 Request Quote
(3N) 99.9% Iron Chromate FE-CRAT-03 Request Quote
(4N) 99.99% Iron Chromate FE-CRAT-04 Request Quote
(5N) 99.999% Iron Chromate FE-CRAT-05 Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Fe2(CrO4)3 10294-52-7 21902690 MFCD00049456 233-661-0 dioxido(dioxo)
chromium; iron(3+)
N/A [O-][Cr](=O)(=O)[O-]
.[O-][Cr](=O)(=O)[O-]
.[O-][Cr](=O)(=O)
[O-].[Fe+3].[Fe+3]
InChI=1S/3Cr
.2Fe.12O/q;;;
2*+3;;;;;;;6*-1
OXLBLZDGMWMXSM-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density Exact Mass Monoisotopic Mass Charge MSDS
Cr3Fe2O12 459.67 N/A N/A 459.630373 459.630373 0 Safety Data Sheet

Chromate IonIron Chromate is generally immediately available in most volumes, including bulk quantities. American Elements can produce materials to custom specifications by request, in addition to custom compositions for commercial and research applications and new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as numerous other machined shapes and in the form of solutions and organometallic compounds. Ultra high purity and high purity forms also include metal powder, submicron powder and nanomaterials, targets for thin film deposition, and pellets for chemical vapor deposition (CVD) and physical vapor deposition (PVD) applications. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available, as is additional research, technical and safety (MSDS) data. Please contact us for information on lead time and pricing above.

Iron (Fe) atomic and molecular weight, atomic number and elemental symbolIron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2.Iron Bohr Model The iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Elemental Iron Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite. Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron element page.

Chromium (Cr) atomic and molecular weight, atomic number and elemental symbolChromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Chromium was first discovered by Louis Nicolas Vauquelin in 1797. It was first isolated in 1798, also by Louis Nicolas Vauquelin. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metal element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it tranforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma' meaning color. For more information on chromium, including properties, safety data, research, and American Elements' catalog of chromium products, visit the Chromium element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements H317
Hazard Codes N
Risk Codes 58
Safety Precautions 61
RTECS Number N/A
Transport Information UN3077 9/PG III
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)
Environment-Hazardous to the aquatic environment        

IRON CHROMATE SYNONYMS
Ferric chromate(VI); Iron(III) Chromate; Diiron tris(chromate); Ferric Chromate, Basic; Iron chromium oxide; Chromic acid, iron (3+) salt (3:2); hydroxy-oxido-dioxochromium; iron(3+);

CUSTOMERS FOR IRON CHROMATE HAVE ALSO LOOKED AT
Iron Pellets Iron Oxide Iron Nitrate Iron Oxide Pellets Iron Nanoparticles
Iron Chloride Iron Acetylacetonate Iron Bars Iron Foil Aluminum Iron Alloy
Zirconium Scandium Iron Alloy Iron Fluoride Iron Metal Iron Acetate Iron Sputtering Target
Show Me MORE Forms of Iron

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Iron

  • Iron Prevents the Development of Experimental Cerebral Malaria by Attenuating CXCR3-Mediated T Cell Chemotaxis. Van Den Ham KM, Shio MT, Rainone A, Fournier S, Krawczyk CM, Olivier M. PLoS One. 2015 Mar 13
  • Virtual iron concentration imaging based on dual-energy CT for noninvasive quantification and grading of liver iron content: An iron overload rabbit model study. Luo XF, Yang Y, Yan J, Xie XQ, Zhang H, Chai WM, Wang L, Schmidt B, Yan FH. Eur Radiol. 2015 Mar 15.
  • Parenteral iron therapy in the treatment of iron deficiency anemia during pregnancy: a randomized controlled trial. Tariq N, Ayub R, Khan WU, Ijaz S, Alam AY. J Coll Physicians Surg Pak. 2015 Mar
  • Effects of Iron Overload on the Bone Marrow Microenvironment in Mice. Zhang Y, Zhai W, Zhao M, Li D, Chai X, Cao X, Meng J, Chen J, Xiao X, Li Q, Mu J, Shen J, Meng A. PLoS One. 2015 Mar 16
  • An antioxidant-like action for non-peroxidisable phospholipids using ferrous iron as a peroxidation initiator. Cortie CH, Else PL. Biochim Biophys Acta. 2015 Mar 11.
  • A Comparative Study of Iron Uptake Rates and Mechanisms amongst Marine and Fresh Water Cyanobacteria: Prevalence of Reductive Iron Uptake. Lis H, Kranzler C, Keren N, Shaked Y. Life (Basel). 2015 Mar 11
  • Micron-sized iron oxide-containing particles for microRNA-targeted manipulation and MRI-based tracking of transplanted cells. Leder A, Raschzok N, Schmidt C, Arabacioglu D, Butter A, Kolano S, de Sousa Lisboa LS, Werner W, Polenz D, Reutzel-Selke A, Pratschke J, Sauer IM. Biomaterials. 2015 May
  • The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014). Guan X, Sun Y, Qin H, Li J, Lo IM, He D, Dong H. Water Res. 2015 Feb 28
  • The effects of iron limitation and cell density on prokaryotic metabolism and gene expression: Excerpts from Fusobacterium necrophorum strain 774 (sheep isolate). Antiabong JF, Ball AS, Brown MH. Gene. 2015 Mar 12.
  • Removal of hexavalent chromium from aqueous solutions using micro zero-valent iron supported by bentonite layer. Daoud W, Ebadi T, Fahimifar A. Water Sci Technol. 2015 Mar
  • Heparin-Engineered Mesoporous Iron Metal-Organic Framework Nanoparticles: Toward Stealth Drug Nanocarriers. Bellido E, Hidalgo T, Lozano MV, Guillevic M, Simón-Vázquez R, Santander-Ortega MJ, González-Fernández Á, Serre C, Alonso MJ, Horcajada P. Adv Healthc Mater. 2015 Mar 12.
  • Iron misregulation and neurodegenerative disease in mouse models that lack iron regulatory proteins. Ghosh MC, Zhang L, Rouault TA. Neurobiol Dis. 2015 Mar 11.
  • How to choose a precursor for decomposition solution-phase synthesis: the case of iron nanoparticles. Herman DA, Cheong-Tilley S, McGrath AJ, McVey BF, Lein M, Tilley RD. Nanoscale. 2015 Mar 16.
  • Iron Supplementation Attenuates the Inflammatory Status of Anemic Piglets by Regulating Hepcidin. Pu Y, Guo B, Liu D, Xiong H, Wang Y, Du H. Biol Trace Elem Res. 2015 Mar 14.
  • Redox speciation analysis of dissolved iron in estuarine and coastal waters with on-line solid phase extraction and graphite furnace atomic absorption spectrometry detection. Chen Y, Feng S, Huang Y, Yuan D. Talanta. 2015 May
  • Preparation of magnetic core-shell iron oxide-silica-nickel-ethylene glycol microspheres for highly efficient sorption of uranium(vi). Tan L, Zhang X, Liu Q, Wang J, Sun Y, Jing X, Liu J, Song D, Liu L. Dalton Trans. 2015 Mar 16.
  • Genetic and biochemical investigations of the role of MamP in redox control of iron biomineralization in Magnetospirillum magneticum. Jones SR, Wilson TD, Brown ME, Rahn-Lee L, Yu Y, Fredriksen LL, Ozyamak E, Komeili A, Chang MC. Proc Natl Acad Sci U S A. 2015 Mar 16.
  • Redox-activity and self-organization of iron-porphyrin monolayers at a copper/electrolyte interface. Phan TH, Wandelt K. J Chem Phys. 2015 Mar 14

Recent Research & Development for Chromates

  • Partial Purification and Characterization of Chromate Reductase of a Novel Ochrobactrum sp. Strain Cr-B4. Hora A, Shetty VK. Prep Biochem Biotechnol. 2015 Nov 17
  • Chromate and phosphate inhibited each other's uptake and translocation in arsenic hyperaccumulator Pteris vittata L. de Oliveira LM, Lessl JT, Gress J, Tisarum R, Guilherme LR, Ma LQ. Environ Pollut. 2015 Feb
  • Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Sandana Mala JG, Sujatha D, Rose C. Microbiol Res. 2015 Jan
  • Mechanisms of chromate adsorption on boehmite. Johnston CP, Chrysochoou M. J Hazard Mater. 2015 Jan 8
  • Sodium chromate demonstrates some insulin-mimetic properties in the fruit fly Drosophila melanogaster. Perkhulyn NV, Rovenko BM, Zvarych TV, Lushchak OV, Storey JM, Storey KB, Lushchak VI. Comp Biochem Physiol C Toxicol Pharmacol. 2015 Jan
  • Genome sequence of the chromate-resistant bacterium Leucobacter salsicius type strain M1-8(T.). Yun JH, Cho YJ, Chun J, Hyun DW, Bae JW. Stand Genomic Sci. 2013 Dec 31
  • Polysulfide speciation and reactivity in chromate-contaminated soil. Chrysochoou M, Johnston CP. J Hazard Mater. 2015 Jan 8
  • Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. Part 5. Effects of nonoriginal surface coatings into the nature and distribution of chromium and sulfur species in chrome yellow paints. Monico L, Janssens K, Vanmeert F, Cotte M, Brunetti BG, Van der Snickt G, Leeuwestein M, Salvant Plisson J, Menu M, Miliani C. Anal Chem. 2014 Nov 4
  • Correction to using chromate to investigate the impact of natural organics on the surface reactivity of nanoparticulate magnetite. Swindle A, Cozzarelli I, Madden AE. Environ Sci Technol. 2015 Mar 3
  • Using chromate to investigate the impact of natural organics on the surface reactivity of nanoparticulate magnetite. Swindle AL, Cozzarelli IM, Elwood Madden AS. Environ Sci Technol. 2015 Feb 17
  • Coupled redox transformation of chromate and arsenite on ferrihydrite. Cerkez EB, Bhandari N, Reeder RJ, Strongin DR. Environ Sci Technol. 2015 Mar 3
  • Cr localization and speciation in roots of chromate fed Helianthus annuus L. seedlings using synchrotron techniques. de la Rosa G, Castillo-Michel H, Cruz-Jiménez G, Bernal-Alvarado J, Córdova-Fraga T, López-Moreno L, Cotte M. Int J Phytoremediation. 2014
  • Chromate alters root system architecture and activates expression of genes involved in iron homeostasis and signaling in Arabidopsis thaliana. Martínez-Trujillo M, Méndez-Bravo A, Ortiz-Castro R, Hernández-Madrigal F, Ibarra-Laclette E, Ruiz-Herrera LF, Long TA, Cervantes C, Herrera-Estrella L, López-Bucio J. Plant Mol Biol. 2014 Sep
  • Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp. Deng P, Tan X, Wu Y, Bai Q, Jia Y, Xiao H. Exp Ther Med. 2015 Mar
  • Adsorption of chromate and cupric ions onto chitosan-coated cotton gauze. Ferrero F, Tonetti C, Periolatto M. Carbohydr Polym. 2014 Sep 22
  • Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. Thatoi H, Das S, Mishra J, Rath BP, Das N. J Environ Manage. 2014 Dec 15
  • Evaluation of bacterial biosensors to determine chromate bioavailability and to assess ecotoxicity of soils. Coelho C, Branco R, Natal-da-Luz T, Sousa JP, Morais PV. Chemosphere. 2015 Feb 2
  • Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal. Sangvanich T, Ngamcherdtrakul W, Lee R, Morry J, Castro D, Fryxell GE, Yantasee W. J Nanomed Nanotechnol. 2014
  • Chromate induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana. López-Bucio J, Ortiz-Castro R, Ruíz-Herrera LF, Juárez CV, Hernández-Madrigal F, Carreón-Abud Y, Martínez-Trujillo M. Biometals. 2015 Feb 22.
  • Assessing the suitability of 8-OHdG and micronuclei as genotoxic biomarkers in chromate-exposed workers: a cross-sectional study. Li P, Gu Y, Yu S, Li Y, Yang J, Jia G. BMJ Open. 2014 Oct 9