Skip to Page Content

Iron Chromate

Fe2(CrO4)3
CAS 10294-52-7


Product Product Code Request Quote
(2N) 99% Iron Chromate FE-CRAT-02 Request Quote
(3N) 99.9% Iron Chromate FE-CRAT-03 Request Quote
(4N) 99.99% Iron Chromate FE-CRAT-04 Request Quote
(5N) 99.999% Iron Chromate FE-CRAT-05 Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Fe2(CrO4)3 10294-52-7 21902690 MFCD00049456 233-661-0 dioxido(dioxo)
chromium; iron(3+)
N/A [O-][Cr](=O)(=O)[O-]
.[O-][Cr](=O)(=O)[O-]
.[O-][Cr](=O)(=O)
[O-].[Fe+3].[Fe+3]
InChI=1S/3Cr
.2Fe.12O/q;;;
2*+3;;;;;;;6*-1
OXLBLZDGMWMXSM-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density Exact Mass Monoisotopic Mass Charge MSDS
Cr3Fe2O12 459.67 N/A N/A 459.630373 459.630373 0 Safety Data Sheet

Chromate IonIron Chromate is generally immediately available in most volumes, including bulk quantities. American Elements can produce materials to custom specifications by request, in addition to custom compositions for commercial and research applications and new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as numerous other machined shapes and in the form of solutions and organometallic compounds. Ultra high purity and high purity forms also include metal powder, submicron powder and nanomaterials, targets for thin film deposition, and pellets for chemical vapor deposition (CVD) and physical vapor deposition (PVD) applications. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available, as is additional research, technical and safety (MSDS) data. Please contact us for information on lead time and pricing above.

Iron (Fe) atomic and molecular weight, atomic number and elemental symbolIron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2.Iron Bohr Model The iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Elemental Iron Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite. Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron element page.

Chromium (Cr) atomic and molecular weight, atomic number and elemental symbolChromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Chromium was first discovered by Louis Nicolas Vauquelin in 1797. It was first isolated in 1798, also by Louis Nicolas Vauquelin. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metal element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it tranforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma' meaning color. For more information on chromium, including properties, safety data, research, and American Elements' catalog of chromium products, visit the Chromium element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements H317
Hazard Codes N
Risk Codes 58
Safety Precautions 61
RTECS Number N/A
Transport Information UN3077 9/PG III
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)
Environment-Hazardous to the aquatic environment        

IRON CHROMATE SYNONYMS
Ferric chromate(VI); Iron(III) Chromate; Diiron tris(chromate); Ferric Chromate, Basic; Iron chromium oxide; Chromic acid, iron (3+) salt (3:2); hydroxy-oxido-dioxochromium; iron(3+);

CUSTOMERS FOR IRON CHROMATE HAVE ALSO LOOKED AT
Iron Pellets Iron Oxide Iron Nitrate Iron Oxide Pellets Iron Nanoparticles
Iron Chloride Iron Acetylacetonate Iron Bars Iron Foil Aluminum Iron Alloy
Zirconium Scandium Iron Alloy Iron Fluoride Iron Metal Iron Acetate Iron Sputtering Target
Show Me MORE Forms of Iron

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Iron

  • Characterization of the enhancement of zero valent iron on microbial azo reduction. Fang Y, Xu M, Wu WM, Chen X, Sun G, Guo J, Liu X. BMC Microbiol. 2015 Apr 10: BMC Microbiol
  • Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. Porcheron G, Dozois CM. Vet Microbiol. 2015 Apr 8.: Vet Microbiol
  • Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Contrast Media Mol Imaging. 2015 Apr 16.: Contrast Media Mol Imaging
  • Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions. Ding J, Su M, Wu C, Lin K. Chemosphere. 2015 Apr 13: Chemosphere
  • Aortic Iron Overload With Oxidative Stress and Inflammation in Human and Murine Abdominal Aortic Aneurysm. Sawada H, Hao H, Naito Y, Oboshi M, Hirotani S, Mitsuno M, Miyamoto Y, Hirota S, Masuyama T. Arterioscler Thromb Vasc Biol. 2015 Apr 16.: Arterioscler Thromb Vasc Biol
  • Comparative mapping combined with homology-based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize. Jin T, Chen J, Zhu L, Zhao Y, Guo J, Huang Y. BMC Genet. 2015 Feb 14: BMC Genet
  • Application of iron oxide b nanoparticles in neuronal tissue engineering. Ziv-Polat O, Margel S, Shahar A. Neural Regen Res. 2015 Feb: Neural Regen Res
  • Stem cells labeled with superparamagnetic iron oxide nanoparticles in a preclinical model of cerebral ischemia: a systematic review with meta-analysis. Nucci LP, Silva HR, Giampaoli V, Mamani JB, Nucci MP, Gamarra LF. Stem Cell Res Ther. 2015 Mar 13: Stem Cell Res Ther
  • How to choose a precursor for decomposition solution-phase synthesis: the case of iron nanoparticles. Herman DA, Cheong-Tilley S, McGrath AJ, McVey BF, Lein M, Tilley RD. Nanoscale. 2015 Mar 16.
  • Preparation of magnetic core-shell iron oxide-silica-nickel-ethylene glycol microspheres for highly efficient sorption of uranium(vi). Tan L, Zhang X, Liu Q, Wang J, Sun Y, Jing X, Liu J, Song D, Liu L. Dalton Trans. 2015 Mar 16.

Recent Research & Development for Chromates

  • Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. Thatoi H, Das S, Mishra J, Rath BP, Das N. J Environ Manage. 2014 Dec 15: J Environ Manage
  • Assessing the suitability of 8-OHdG and micronuclei as genotoxic biomarkers in chromate-exposed workers: a cross-sectional study. Li P, Gu Y, Yu S, Li Y, Yang J, Jia G. BMJ Open. 2014 Oct 9: BMJ Open
  • Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal. Sangvanich T, Ngamcherdtrakul W, Lee R, Morry J, Castro D, Fryxell GE, Yantasee W. J Nanomed Nanotechnol. 2014: J Nanomed Nanotechnol
  • Sodium chromate demonstrates some insulin-mimetic properties in the fruit fly Drosophila melanogaster. Perkhulyn NV, Rovenko BM, Zvarych TV, Lushchak OV, Storey JM, Storey KB, Lushchak VI. Comp Biochem Physiol C Toxicol Pharmacol. 2015 Jan: Comp Biochem Physiol C Toxicol Pharmacol
  • Partial purification and characterization of chromate reductase of a novel Ochrobactrum sp. strain Cr-B4. Hora A, Shetty VK. Prep Biochem Biotechnol. 2015: Prep Biochem Biotechnol
  • Polysulfide speciation and reactivity in chromate-contaminated soil. Chrysochoou M, Johnston CP. J Hazard Mater. 2015 Jan 8: J Hazard Mater
  • Chromate and phosphate inhibited each other's uptake and translocation in arsenic hyperaccumulator Pteris vittata L. de Oliveira LM, Lessl JT, Gress J, Tisarum R, Guilherme LR, Ma LQ. Environ Pollut. 2015 Feb: Environ Pollut
  • Chromate induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana. López-Bucio J, Ortiz-Castro R, Ruíz-Herrera LF, Juárez CV, Hernández-Madrigal F, Carreón-Abud Y, Martínez-Trujillo M. Biometals. 2015 Apr: Biometals
  • Evaluation of bacterial biosensors to determine chromate bioavailability and to assess ecotoxicity of soils. Coelho C, Branco R, Natal-da-Luz T, Sousa JP, Morais PV. Chemosphere. 2015 Jun: Chemosphere
  • Coupled redox transformation of chromate and arsenite on ferrihydrite. Cerkez EB, Bhandari N, Reeder RJ, Strongin DR. Environ Sci Technol. 2015 Mar 3: Environ Sci Technol