Iron Chromate

Fe2(CrO4)3
CAS 10294-52-7


Product Product Code Order or Specifications
(2N) 99% Iron Chromate FE-CRAT-02 Contact American Elements
(3N) 99.9% Iron Chromate FE-CRAT-03 Contact American Elements
(4N) 99.99% Iron Chromate FE-CRAT-04 Contact American Elements
(5N) 99.999% Iron Chromate FE-CRAT-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Fe2(CrO4)3 10294-52-7 21902690 MFCD00049456 233-661-0 dioxido(dioxo)
chromium; iron(3+)
N/A [O-][Cr](=O)(=O)[O-]
.[O-][Cr](=O)(=O)[O-]
.[O-][Cr](=O)(=O)
[O-].[Fe+3].[Fe+3]
InChI=1S/3Cr
.2Fe.12O/q;;;
2*+3;;;;;;;6*-1
OXLBLZDGMWMXSM-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density

Exact Mass

Monoisotopic Mass Charge MSDS
Cr3Fe2O12 459.67 N/A N/A 459.630373 459.630373 0 Safety Data Sheet

Chromate IonIron Chromate is generally immediately available in most volumes, including bulk quantities. American Elements can produce materials to custom specifications by request, in addition to custom compositions for commercial and research applications and new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as numerous other machined shapes and in the form of solutions and organometallic compounds. Ultra high purity and high purity forms also include metal powder, submicron powder and nanomaterials, targets for thin film deposition, and pellets for chemical vapor deposition (CVD) and physical vapor deposition (PVD) applications. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available, as is additional research, technical and safety (MSDS) data. Please contact us for information on lead time and pricing above.

Iron (Fe) atomic and molecular weight, atomic number and elemental symbolIron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2.Iron Bohr Model The iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Elemental Iron Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite , hematite, goethite, limonite, or siderite. Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron Information Center.

Chromium (Cr) atomic and molecular weight, atomic number and elemental symbolChromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Chromium was first discovered by Louis Nicolas Vauquelin in 1797. It was first isolated in 1798, also by Louis Nicolas Vauquelin. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metal element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it tranforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma' meaning color. For more information on chromium, including properties, safety data, research, and American Elements' catalog of chromium products, visit the Chromium Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements H317
Hazard Codes N
Risk Codes 58
Safety Precautions 61
RTECS Number N/A
Transport Information UN3077 9/PG III
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)
Environment-Hazardous to the aquatic environment        

IRON CHROMATE SYNONYMS
Ferric chromate(VI); Iron(III) Chromate; Diiron tris(chromate); Ferric Chromate, Basic; Iron chromium oxide; Chromic acid, iron (3+) salt (3:2); hydroxy-oxido-dioxochromium; iron(3+);

CUSTOMERS FOR IRON CHROMATE HAVE ALSO LOOKED AT
Show Me MORE Forms of Iron

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Iron

  • B.S. Yilbas, I. Toor, C. Karatas, J. Malik, I. Ovali, Laser treatment of dual matrix structured cast iron surface: Corrosion resistance of surface, Optics and Lasers in Engineering, Volume 64, January 2015
  • Ussadawut Patakham, Chaowalit Limmaneevichitr, Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Ming Luo, Shuzhong Wang, Longfei Wang, Mingming Lv, Reduction kinetics of iron-based oxygen carriers using methane for chemical-looping combustion, Journal of Power Sources, Volume 270, 15 December 2014
  • Ercan Avci, Enhanced cathode performance of nano-sized lithium iron phosphate composite using polytetrafluoroethylene as carbon precursor, Journal of Power Sources, Volume 270, 15 December 2014
  • Nicholas S. Hudak, Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • Yong Zhang, Hongliang Zheng, Yue Liu, Lei Shi, Qingming Zhao, Xuelei Tian, Efficient use of iron impurity in Al–Si alloys, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Lin Lin, Meng Li, Liqing Jiang, Yongfeng Li, Dajun Liu, Xingquan He, Lili Cui, A novel iron (?) polyphthalocyanine catalyst assembled on graphene with significantly enhanced performance for oxygen reduction reaction in alkaline medium, Journal of Power Sources, Volume 268, 5 December 2014
  • Jun-chao Zheng, Xing Ou, Bao Zhang, Chao Shen, jia-feng Zhang, Lei Ming, Ya-dong Han, Effects of Ni2+ doping on the performances of lithium iron pyrophosphate cathode material, Journal of Power Sources, Volume 268, 5 December 2014
  • Wassima El Mofid, Svetlozar Ivanov, Alexander Konkin, Andreas Bund, A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution, Journal of Power Sources, Volume 268, 5 December 2014
  • Hiroyuki Usui, Kazuma Nouno, Yuya Takemoto, Kengo Nakada, Akira Ishii, Hiroki Sakaguchi, Influence of mechanical grinding on lithium insertion and extraction properties of iron silicide/silicon composites, Journal of Power Sources, Volume 268, 5 December 2014
  • Jorge Omar Gil Posada, Peter J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, Journal of Power Sources, Volume 268, 5 December 2014
  • Weiling Wang, Sen Luo, Miaoyong Zhu, Dendritic growth of high carbon iron-based alloy under constrained melt flow, Computational Materials Science, Volume 95, December 2014
  • Haohua Wen, C.H. Woo, Temperature dependence of enthalpies and entropies of formation and migration of mono-vacancy in BCC iron, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • Farong Wan, Qian Zhan, Yi Long, Shanwu Yang, Gaowei Zhang, Yufeng Du, Zhijie Jiao, Somei Ohnuki, The behavior of vacancy-type dislocation loops under electron irradiation in iron, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • R.E. Stoller, Yu.N. Osetsky, An atomistic assessment of helium behavior in iron, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • C.W. He, M.F. Barthe, P. Desgardin, S. Akhmadaliev, M. Behar, F. Jomard, Positron studies of interaction between yttrium atoms and vacancies in bcc iron with relevance for ODS nanoparticles formation, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • Qianxu Ye, Hongbo Zhu, Libo Zhang, Ji Ma, Li Zhou, Peng Liu, Jian Chen, Guo Chen, Jinhui Peng, Preparation of reduced iron powder using combined distribution of wood-charcoal by microwave heating, Journal of Alloys and Compounds, Volume 613, 15 November 2014
  • Tsuyoshi Honma, Atsushi Sato, Noriko Ito, Takuya Togashi, Kenji Shinozaki, Takayuki Komatsu, Crystallization behavior of sodium iron phosphate glass Na2 - xFe1 + 0.5xP2O7 for sodium ion batteries, Journal of Non-Crystalline Solids, Volume 404, 15 November 2014
  • Guanghua Wang, Kezhu Jiang, Mingli Xu, Chungang Min, Baohua Ma, Xikun Yang, A high activity nitrogen-doped carbon catalyst for oxygen reduction reaction derived from polyaniline-iron coordination polymer, Journal of Power Sources, Volume 266, 15 November 2014
  • I. Quinzeni, S. Ferrari, E. Quartarone, D. Capsoni, M. Caputo, A. Goldoni, P. Mustarelli, M. Bini, Fabrication and electrochemical characterization of amorphous lithium iron silicate thin films as positive electrodes for lithium batteries, Journal of Power Sources, Volume 266, 15 November 2014

Recent Research & Development for Chromates

  • Takuhiro Otsuka, Takeshi Akaboshi, Youkoh Kaizu, Anisotropic energy-transfer in encounter complex in aqueous solutions: Ligand congeniality between photo-excited mixed-ligand tris(a,a'-diimine)-ruthenium(II) [Ru(phen)3-n(4dmb)n]2+ and tris(malonato)chromate(III) [Cr(mal)3]3-, Inorganica Chimica Acta, Volume 421, 1 September 2014
  • Cong Ruan, Kui Xie, Liming Yang, Bin Ding, Yucheng Wu, Efficient carbon dioxide electrolysis in a symmetric solid oxide electrolyzer based on nanocatalyst-loaded chromate electrodes, International Journal of Hydrogen Energy, Volume 39, Issue 20, 3 July 2014
  • Sébastien Pommiers, Jérôme Frayret, Alain Castetbon, Martine Potin-Gautier, Alternative conversion coatings to chromate for the protection of magnesium alloys, Corrosion Science, Volume 84, July 2014
  • Sylvia Britto, P. Vishnu Kamath, Synthesis, structure refinement and chromate sorption characteristics of an Al-rich bayerite-based layered double hydroxide, Journal of Solid State Chemistry, Volume 215, July 2014
  • S.M. El-Sheikh, M.A. Rabah, Optical properties of calcium chromate 1D-nanorods synthesized at low temperature from secondary resources, Optical Materials, Available online 30 June 2014
  • R.K. Gupta, B.R.W. Hinton, N. Birbilis, The effect of chromate on the pitting susceptibility of AA7075-T651 studied using potentiostatic transients, Corrosion Science, Volume 82, May 2014
  • Sébastien Pommiers-Belin, Jérôme Frayret, Arnaud Uhart, JeanBernard Ledeuil, Jean-Charles Dupin, Alain Castetbon, Martine Potin-Gautier, Determination of the chemical mechanism of chromate conversion coating on magnesium alloys EV31A, Applied Surface Science, Volume 298, 15 April 2014
  • Joshua Olusegun Okeniyi, Olugbenga Adeshola Omotosho, Oluseyi Olanrewaju Ajayi, Cleophas Akintoye Loto, Effect of potassium-chromate and sodium-nitrite on concrete steel-rebar degradation in sulphate and saline media, Construction and Building Materials, Volume 50, 15 January 2014
  • Shanshan Xu, Dehua Dong, Yan Wang, Winston Doherty, Kui Xie, Yucheng Wu, Perovskite chromates cathode with resolved and anchored nickel nano-particles for direct high-temperature steam electrolysis, Journal of Power Sources, Volume 246, 15 January 2014
  • Selvakumar Sellaiyan, Anthony E. Hughes, Suzanne V. Smith, Akira Uedono, James Sullivan, Stephen Buckman, Leaching properties of chromate-containing epoxy films using radiotracers, PALS and SEM, Progress in Organic Coatings, Volume 77, Issue 1, January 2014
  • N. Boutal, G. Rekhila, K. Taïbi, M. Trari, Relaxor ferroelectric and photo-electrochemical properties of lead-free Ba1-xEu2x/3(Ti0.75Zr0.25)O3 ceramics. Application to chromate reduction, Solar Energy, Volume 99, January 2014
  • Yan Shao, Min Zhou, Weixing Wang, Haobo Hou, Identification of chromate binding mechanisms in Friedel’s salt, Construction and Building Materials, Volume 48, November 2013
  • A. Benhamou, J.P. Basly, M. Baudu, Z. Derriche, R. Hamacha, Amino-functionalized MCM-41 and MCM-48 for the removal of chromate and arsenate, Journal of Colloid and Interface Science, Volume 404, 15 August 2013
  • Baojiao Gao, Xiaohua Wang, Yanyan Zhang, Preparation of chromate anion surface-imprinted material IIP-PVI/SiO2 based on polyvinylimidazole-grafted particles PVI/SiO2 and its ionic recognition characteristic, Materials Chemistry and Physics, Volume 140, Issues 2–3, 15 July 2013
  • Faezeh Soofivand, Fatemeh Mohandes, Masoud Salavati-Niasari, Silver chromate and silver dichromate nanostructures: Sonochemical synthesis, characterization, and photocatalytic properties, Materials Research Bulletin, Volume 48, Issue 6, June 2013
  • X. Montero, M.C. Galetz, M. Schütze, Low-activity aluminide coatings for superalloys using a slurry process free of halide activators and chromates, Surface and Coatings Technology, Volume 222, 15 May 2013
  • Matías Jobbágy, Alberto E. Regazzoni, Complexation at the edges of hydrotalcite: The cases of arsenate and chromate, Journal of Colloid and Interface Science, Volume 393, 1 March 2013
  • Marcus Rohnke, Mareike Falk, Anne-Katrin Huber, Jürgen Janek, Combining high temperature electrochemistry and time of flight secondary ion mass spectrometry: Quasi in situ study of lanthanum strontium chromate manganate electrodes, Journal of Power Sources, Volume 221, 1 January 2013
  • Juan Antelo, Sarah Fiol, Dora Gondar, Rocío López, Florencio Arce, Comparison of arsenate, chromate and molybdate binding on schwertmannite: Surface adsorption vs anion-exchange, Journal of Colloid and Interface Science, Volume 386, Issue 1, 15 November 2012