Skip to Page Content

Iron Wire

High Purity Fe Wire
CAS 7439-89-6


Product Product Code Request Quote
(2N) 99% Iron Wire FE-M-02-W Request Quote
(3N) 99.9% Iron Wire FE-M-03-W Request Quote
(4N) 99.99% Iron Wire FE-M-04-W Request Quote
(5N) 99.999% Iron Wire FE-M-05-W Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Fe 7439-89-6 24847522 N/A MFCD00010999 231-096-4 N/A [Fe] InChI=1S/Fe XEEYBQQBJWHFJM-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
55.85 Gray kg/m³ N/A 1535°C 2750°C 0.804 W/cm/K @ 298.2 K 9.71 microhm-cm @ 20°C 1.8 Paulings 0.106 Cal/g/K @ 25°C 84.6 K-Cal/gm atom at 2750°C 3.56 Cal/gm mole Safety Data Sheet

American Elements specializes in producing high purity uniform shaped Iron Wire with the highest possible density High Purity Metal Wire Image for use in semiconductor, Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). Our standard Metal Wire sizes range from 0.75 mm to 1 mm to 2 mm diameter with strict tolerances (See ASTM requirements) and alpha values (conductive resistance) for uses such as gas detection and thermometry tolerances (Also see Nanoparticles) . Please contact us to fabricate custom wire alloys and gauge sizes. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles and in the form of solutions and organometallics. We can also provide Rod outside this range. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. We also produce Iron as powder, ingot, pieces, pellets, disc, granules and in compound forms, such as oxide. Other shapes are available by request.

Iron (Fe) atomic and molecular weight, atomic number and elemental symbolIron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2.Iron Bohr Model The iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Elemental Iron Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite. Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
N/A
N/A
N/A
N/A
N/A
N/A
N/A
nwg
N/A        

CUSTOMERS FOR IRON HAVE ALSO LOOKED AT
Iron Pellets Iron Oxide Iron Nitrate Iron Oxide Pellets Iron Nanoparticles
Iron Chloride Iron Acetylacetonate Iron Bars Iron Foil Aluminum Iron Alloy
Zirconium Scandium Iron Alloy Iron Fluoride Iron Metal Iron Acetate Iron Sputtering Target
Show Me MORE Forms of Iron

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Iron

  • Polychlorinated biphenyls (PCBs) exert an inhibition on hepcidin expression through an estrogen-like effect associated with disordered systemic iron homeostasis. Yi Qian, Shuping Zhang, Wenli Guo, Juan Ma, Yue Chen, Lei Wang, Meirong Zhao, and Sijin Liu. Chem. Res. Toxicol.: February 16, 2015
  • pH-Responsive Iron Manganese Silicate Nanoparticles as T1-T2* Dual-Modal Imaging Probes for Tumor Diagnosis. Jian Chen, Weijie Zhang, Zhen Guo, Haibao Wang, Dongdong Wang, Jiajia Zhou, and Qianwang Chen. ACS Appl. Mater. Interfaces: February 16, 2015
  • Hollow Iron Oxide Nanoparticles in Polymer Nanobeads as MRI Contrast Agents. Nadja C Bigall, Enrico Dilena, Dirk Dorfs, Marie-Lys Beoutis, Giammarino Pugliese, Claire Wilhelm, Florence Gazeau, Abid Ali Khan, Alexander M Bittner, Miguel Angel Garcia, Mar Garcia-Hernandez, Liberato Manna, and Teresa Pellegrino. J. Phys. Chem. C: February 16, 2015
  • Stable isotopes and iron oxide mineral products as markers of chemodenitrification. L Camille Jones, Brian Peters, Juan S. Lezama Pacheco, Karen Casciotti, and Scott Fendorf. Environ. Sci. Technol.: February 16, 2015
  • Preparation of Unsupported Iron Fischer-Tropsch Catalyst by Simple, Novel, Solvent Deficient Precipitation (SDP) Method. Kyle M. Brunner, Grant E. Harper, Kamyar Keyvanloo, Brian F. Woodfield, Calvin H. Bartholomew, and William C. Hecker. Energy Fuels: February 15, 2015
  • Manganese Doped Iron Oxide Theranostic Nanoparticles for Combined T1 Magnetic Resonance Imaging and Photothermal Therapy. Mengxin Zhang, Yuhua Cao, Lina Wang, Yufei Ma, Xiaolong Tu, and Zhijun Zhang. ACS Appl. Mater. Interfaces: February 12, 2015
  • Iron- and Indium-Catalyzed Reactions toward Nitrogen- and Oxygen-Containing Saturated Heterocycles. Johan Cornil, Laurine Gonnard, Charlélie Bensoussan, Anna Serra-Muns, Christian Gnamm, Claude Commandeur, Malgorzata Commandeur, Sébastien Reymond, Amandine Guérinot, and Janine Cossy. Acc. Chem. Res.: February 12, 2015
  • Unraveling the structure of Iron(III) oxalate tetrahydrate and its reversible Li insertion capability. Hania Ahouari, Gwenaelle Rousse, Juan Jose Rodriguez-Carvajal, Moulay Tahar Sougrati, Matthieu Saubanère, Matthieu Courty, Nadir Recham, and Jean-Marie Tarascon. Chem. Mater.: February 12, 2015
  • Role of Surface Chemistry and Morphology in Reactive Adsorption Of H2S on Iron (Hydr)oxides/Graphite Oxide Composites. Javier A. Arcibar-Orozco, Rajiv Wallace, Joshua K. Mitchell, and Teresa J Bandosz. Langmuir: February 12, 2015
  • Surface and Interfacial Engineering of Iron Oxide Nanoplates for Highly Efficient Magnetic Resonance Angiography. Zijian Zhou, Changqiang Wu, Hanyu Liu, Xianglong Zhu, Zhenghuan Zhao, Lirong Wang, Ye Xu, Hua Ai, and Jinhao Gao. ACS Nano: February 11, 2015