Iron(III) Oxalate Hexahydrate

Fe2(C2O4)3• 6H2O
CAS 166897-40-1


Product Product Code Order or Specifications
(2N) 99% Iron(III) Oxalate Hexahydrate FE3-OXL-02-6HYD Contact American Elements
(3N) 99.9% Iron(III) Oxalate Hexahydrate FE3-OXL-03-6HYD Contact American Elements
(4N) 99.99% Iron(III) Oxalate Hexahydrate FE3-OXL-04-6HYD Contact American Elements
(5N) 99.999% Iron(III) Oxalate Hexahydrate FE3-OXL-05-6HYD Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name SMILES
Identifier
InChI
Identifier
InChI
Key
Fe2(C2O4)3• 6H2O 166897-40-1 162277563 57370413 MFCD00151243 220-951-7 iron(3+); oxalate; hexahydrate [Fe+3].[Fe+3].O=
C([O-])C([O-])=O.
[O-]C(=O)C([O-])=
O.[O-]C(=O)C([O-])
=O.O.O.O.O.O.O
InChI=1S/3C2H2O4.
2Fe.6H2O/c3*3-1(4)
2(5)6;;;;;;;;/h3*(H,3,4)
(H,5,6);;;6*1H2/q;;;
2*+3;;;;;;/p-6
FWXIZVVTJVNNRX-UHFFFAOYSA-H

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
C6H12Fe2O18 483.84 Lime green powder or chunks N/A N/A N/A 483.872239 483.872239 0 Safety Data Sheet

Oxalate IonIron(III) Oxalate Hexahydrate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Iron (Fe) atomic and molecular weight, atomic number and elemental symbolIron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2.Iron Bohr Model The iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Elemental Iron Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite , hematite, goethite, limonite, or siderite. Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H302-H312
Hazard Codes Xn
Risk Codes 21/22
Safety Precautions 24/25
RTECS Number N/A
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity        

IRON(III) OXALATE HEXAHYDRATE SYNONYMS
Ferric oxalate hexahydrate; diiron trioxalate hexahydrate; Iron(3+) ethanedioate hydrate (2:3:6)

CUSTOMERS FOR IRON(III) OXALATE HEXAHYDRATE HAVE ALSO LOOKED AT
Show Me MORE Forms of Iron

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Iron

  • Zhi-kai Chen, Shu-chao Lu, Xi-bin Song, Haifeng Zhang, Wan-shi Yang, Hong Zhou, Effects of bionic units on the fatigue wear of gray cast iron surface with different shapes and distributions, Optics & Laser Technology, Volume 66, March 2015
  • Z. Karoly, J. Szepvolgyi, W. Kaszuwara, O. Łabędź, M. Bystrzejewski, Influence of ferrite stabilizing elements and Co on structure and magnetic properties of carbon-encapsulated iron nanoparticles synthesized in thermal plasma jet, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Fei Liu, Yehua Jiang, Han Xiao, Jun Tan, Study on fragmentation and dissolution behavior of carbide in a hot-rolled hypereutectic high chromium cast iron, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • J. O’Flynn, S.F. Corbin, The influence of iron powder size on pore formation, densification and homogenization during blended elemental sintering of Ti–2.5Fe, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • V.S. Rudnev, M.V. Adigamova, I.V. Lukiyanchuk, I.A. Tkachenko, V.P. Morozova, Structure and magnetic characteristics of iron-modified titania layers on titanium, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • L. Yang, F. Gao, R.J. Kurtz, X.T. Zu, Atomistic simulations of helium clustering and grain boundary reconstruction in alpha-iron, Acta Materialia, Volume 82, 1 January 2015
  • Jin Gi Hong, Yongsheng Chen, Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide, Journal of Membrane Science, Volume 473, 1 January 2015
  • Q.C. Fan, X.Q. Jiang, Z.H. Zhou, W. Ji, H.Q. Cao, Constitutive relationship and hot deformation behavior of Armco-type pure iron for a wide range of temperature, Materials & Design, Volume 65, January 2015
  • Uğur Çavdar, Bekir Sadık Ünlü, Ahmet Murat Pinar, Enver Atik, Mechanical properties of heat treated iron based compacts, Materials & Design, Volume 65, January 2015
  • Adrian H.A. Lutey, Alessandro Fortunato, Alessandro Ascari, Simone Carmignato, Claudio Leone, Laser cutting of lithium iron phosphate battery electrodes: Characterization of process efficiency and quality, Optics & Laser Technology, Volume 65, January 2015