Gallium Acetylacetonate

Ga(CH3COCHCOCH3)3
CAS 14405-43-7


Product Product Code Order or Specifications
(2N) 99% Gallium Acetylacetonate GA-ACAC-02 Contact American Elements
(3N) 99.9% Gallium Acetylacetonate GA-ACAC-03 Contact American Elements
(4N) 99.99% Gallium Acetylacetonate GA-ACAC-04 Contact American Elements
(5N) 99.999% Gallium Acetylacetonate GA-ACAC-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Ga(CH3COCHCOCH3)3 14405-43-7 16717626 MFCD00013492 238-377-0 (Z)-4-bis[(Z)-1-methyl-3-oxobut-1-enoxy]gallanyloxypent-3-en-2-one N/A [Ga+3].O=C(/C=C(\[O-])C)C.[O-]\C(=C/C(=O)C)C.[O-]\C(=C/C(=O)C)C InChI=1S/3C5H8O2.Ga/c3*1-4(6)3-5(2)7;/h3*3,6H,1-2H3;/q;;;+3/p-3/b3*4-3-; ZVYYAYJIGYODSD-LNTINUHCSA-K

PROPERTIES Compound Formula Mol. Wt. Appearance Density

Exact Mass

Monoisotopic Mass Charge MSDS
C15H21GaO6 367.05 White to Pale Yellow 1.42 g/cm3 366.059 366.059 0 Safety Data Sheet

Acetylaceton Formula Diagram (C5H8O2)Gallium Acetylacetonate is a Gallium source that is soluble in organic solvents as an organometallic compound (also known as metalorganic, organo-inorganic and metallo-organic Acetylacetonate Packaging, Lab Quantitycompounds). The high purity acetylacetonate anion complexes by bonding each oxygen atom to the metallic cation to form a chelate ring; because of this property, acetylacetonates are commonly used in various catalysts and catalytic reagents for organic synthesis, including the fabrication of various shapes of carbon nanostructures (as demonstrated by a 2013 experiment by researchers at the Leibniz Institute for Solid State and Materials Research Dresden) via the use of chemical vapor deposition (CVD) and laser evaporation techniques. It is generally immediately available in most volumes. Ultra high purity and high purity forms may be considered. Gallium Acetylacetonate is one of numerous organo-metallic compounds (also known as metalorganic, organo-inorganic and metallo-organic compounds) sold by American Elements under the tradename AE Organo-Metallics™ for uses requiring non-aqueous solubility such as recent solar energy and water treatment applications. Similar results can sometimes also be achieved with Nanoparticles (also see Nanotechnology and Quantum Dots) and by thin film deposition. Note American Elements additionally supplies many materials as solutions. The application of Gallium that has received the most attention is the production of semiconducting compounds. Nowadays gallium arsenide (Ga-As) is undoubtedly the most used. This compound is used in the production of several electronic parts such as diodes and transistors, made for voltage rectification, signal amplification, etc. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Gallium (Ga) atomic and molecular weight, atomic number and elemental symbolGallium (atomic symbol: Ga, atomic number: 31) is a Block P, Group 13, Period 4 element with an atomic weight of 69.723.The number of electrons in each of Gallium's shells is 2, 8, 18, 3 and its electron configuration is [Ar] 3d10 4s2 4p1. The gallium atom has a radius of 122.1 pm and a Van der Waals radius of 187 pm. Gallium Bohr ModelGallium was predicted by Dmitri Mendeleev in 1871. It was first discovered and isolated by Lecoq de Boisbaudran in 1875. In its elemental form, gallium has a silvery appearance. Elemental GalliumGallium is one of three elements that occur naturally as a liquid at room temperature, the other two being mercury and cesium. Gallium does not exist as a free element in nature and is sourced commercially from bauxite and sphalerite. Currently, gallium is used in semiconductor materials for microelectronics and optics. The element name originates from the Latin word 'Gallia', the old name of France, and the word 'Gallus,' meaning rooster. For more information on gallium, including properties, safety data, research, and American Elements' catalog of gallium products, visit our Periodic Table of the Elements: Gallium Information Page.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H302-H312-H315-H319-H332-H335-H351
Hazard Codes Xn
Risk Codes 20/21/22-36/37/38-40
Safety Precautions 26-36/37/39
RTECS Number N/A
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity Health Hazard      

GALLIUM ACETYLACETONATE SYNONYMS
Gallium(III) acetylacetonate; 3-penten-2-one, 4-hydroxy-, gallium salt, (3Z)- (3:1); tris(pentane-2,4-dionato-O,O')gallium; Ga(acac)3; Gallium tris[(2Z)-4-oxopent-2-en-2-olate]; Gallium(III) 2,4-pentanedionate; Gallium(III) 2,4-pentanedionate

CUSTOMERS FOR GALLIUM ACETYLACETONATE HAVE ALSO LOOKED AT
Gallium Acetylacetonate Gallium Acetate Gallium Fluoride Gallium Sputtering Target Gallium Chloride
Gallium Rod Gallium Oxide Pellets Gallium Oxide Nanopowder Gallium Oxide Powder Gallium Pellets
Gadolinium Gallium Garnet-GGG Copper Gallium Sputtering Target Gallium Metal Gallium Foil Gallium Oxide
Show Me MORE Forms of Gallium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Gallium

  • P. Zhang, L.W. Shen, J. Ouyang, Y.M. Zhang, S.Q. Wu, Z.M. Sun, Room temperature mushrooming of gallium wires and its growth mechanism, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Wei-Sheng Liu, Shen-Yu Wu, Chao-Yu Hung, Ching-Hsuan Tseng, Yu-Lin Chang, Improving the optoelectronic properties of gallium ZnO transparent conductive thin films through titanium doping, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Mohamed Bakr Mohamed, M. Yehia, Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Erkan Aydin, Mehmet Sankir, Nurdan Demirci Sankir, Conventional and rapid thermal annealing of spray pyrolyzed copper indium gallium sulfide thin films, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Ming-Wei Wu, Pang-Hsin Lai, Chia-Hong Hong, Fang-Cheng Chou, The sintering behavior, microstructure, and electrical properties of gallium-doped zinc oxide ceramic targets, Journal of the European Ceramic Society, Volume 34, Issue 15, December 2014
  • Min-Jia Wang, Hui Yang, Qi-Long Zhang, Zhi-Sheng Lin, Zi-Shan Zhang, Dan Yu, Liang Hu, Microstructure and dielectric properties of BaTiO3 ceramic doped with yttrium, magnesium, gallium and silicon for AC capacitor application, Materials Research Bulletin, Volume 60, December 2014
  • Helge Reinsch, Dirk De Vos, Structures and properties of gallium-MOFs with MIL-53-topology based on aliphatic linker molecules, Microporous and Mesoporous Materials, Volume 200, December 2014
  • V.V. Serikov, N.M. Kleinerman, A.V. Vershinin, N.V. Mushnikov, A.V. Protasov, L.A. Stashkova, O.I. Gorbatov, A.V. Ruban, Yu.N. Gornostyrev, Formation of solid solutions of gallium in Fe–Cr and Fe–Co alloys: Mössbauer studies and first-principles calculations, Journal of Alloys and Compounds, Volume 614, 25 November 2014
  • Jae-Hun Jeong, Dong-Won Jung, Eun-Suok Oh, Lithium storage characteristics of a new promising gallium selenide anodic material, Journal of Alloys and Compounds, Volume 613, 15 November 2014
  • Fahmi Fariq Muhammad, Khaulah Sulaiman, Optical and morphological modifications in post-thermally treated tris(8-hydroxyquinoline) gallium films deposited on quartz substrates, Materials Chemistry and Physics, Volume 148, Issues 1–2, 14 November 2014

Recent Research & Development for Acetylacetonates

  • Sudipta Chatterjee, Sutanuva Mandal, Sucheta Joy, Chen-Hsiung Hung, Sreebrata Goswami, ortho-Carom–N bond fusion in aniline associated with electrophilic chlorination reactions at ruthenium(III) coordinated acetylacetonates, Inorganica Chimica Acta, Volume 374, Issue 1, 1 August 2011
  • János Madarász, Shoji Kaneko, Masayuki Okuya, György Pokol, Comparative evolved gas analyses of crystalline and amorphous titanium(IV)oxo-hydroxo-acetylacetonates by TG-FTIR and TG/DTA-MS, Thermochimica Acta, Volume 489, Issues 1–2, 20 May 2009
  • Satoshi Yoda, Yoko Mizuno, Takeshi Furuya, Yoshihiro Takebayashi, Katsuto Otake, Tomoya Tsuji, Toshihiko Hiaki, Solubility measurements of noble metal acetylacetonates in supercritical carbon dioxide by high performance liquid chromatography (HPLC), The Journal of Supercritical Fluids, Volume 44, Issue 2, March 2008
  • M. Aslam Siddiqi, Rehan A. Siddiqui, Burak Atakan, Thermal stability, sublimation pressures and diffusion coefficients of some metal acetylacetonates, Surface and Coatings Technology, Volume 201, Issues 22–23, 25 September 2007
  • María R. Pedrosa, Jaime Escribano, Rafael Aguado, Virginia Díez, Roberto Sanz, Francisco J. Arnáiz, Dinuclear oxomolybdenum(VI) acetylacetonates: Crystal and molecular structure of Mo2O5(acac)2L2 (L = D2O, DMF), Polyhedron, Volume 26, Issue 14, 31 August 2007
  • S.V. Samoilenkov, M.A. Stefan, G. Wahl, MOCVD of thick YSZ coatings using acetylacetonates, Surface and Coatings Technology, Volume 192, Issue 1, 1 March 2005
  • Thomas Behrsing, Alan M Bond, Glen B Deacon, Craig M Forsyth, Maria Forsyth, Kalpana J Kamble, Brian W Skelton, Allan H White, Cerium acetylacetonates—new aspects, including the lamellar clathrate [Ce(acac)4]·10H2O, Inorganica Chimica Acta, Volume 352, 6 August 2003
  • R Leboda, J Skubiszewska-Zieba, J Rynkowski, Preparation and porous structure of carbon–silica adsorbents obtained on the basis of Ti, Co, Ni, Cr, Zn and Zr acetylacetonates and acetylacetone, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 174, Issue 3, 1 December 2000
  • V.M. Gun'ko, R. Leboda, J. Skubiszewska-Zi?ba, J. Rynkowski, Silica Gel Modified Due to Pyrolysis of Acetylacetone and Metal (Ti, Cr, Co, Ni, Zn, Zr) Acetylacetonates, Journal of Colloid and Interface Science, Volume 231, Issue 1, 1 November 2000
  • V.G Isakova, I.A Baidina, N.B Morozova, I.K Igumenov, ?-Halogenated iridium(III) acetylacetonates, Polyhedron, Volume 19, Issue 9, 15 May 2000