Gallium Arsenide

High Purity GaAs
CAS 1303-00-0

Product Product Code Order or Specifications
(5N) 99.999% Gallium Arsenide Powder GA-AS-05-P Contact American Elements
(5N) 99.999% Gallium Arsenide Ingot GA-AS-05-I Contact American Elements
(5N) 99.999% Gallium Arsenide Chunk GA-AS-05-CK Contact American Elements
(5N) 99.999% Gallium Arsenide Lump GA-AS-05-L Contact American Elements
(5N) 99.999% Gallium Arsenide Sputtering Target GA-AS-05-ST Contact American Elements
(5N) 99.999% Gallium Arsenide Wafer GA-AS-05-WSX Contact American Elements

Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
GaAs 1303-00-0 14770 MFCD00011017 215-114-8 gallanylidynearsane N/A [As]#[Ga] InChI=1S/As.Ga JBRZTFJDHDCESZ-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting

Exact Mass

Monoisotopic Mass Charge MSDS
AsGa 144.64 Gray crystalline solid 1238°C N/A 5.32 g/cm3 143.84717 143.84717 0 Safety Data Sheet

Arsenide IonGallium Arsenide is a semiconductor with superior electronic properties to silicon. It has a higher saturated electron velocity and higher electron mobility, allowing it to function at microwave frequencies. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Gallium (Ga) atomic and molecular weight, atomic number and elemental symbolGallium (atomic symbol: Ga, atomic number: 31) is a Block P, Group 13, Period 4 element with an atomic weight of 69.723. Gallium Bohr ModelThe number of electrons in each of Gallium's shells is 2, 8, 18, 3 and its electron configuration is [Ar] 3d10 4s2 4p1. The gallium atom has a radius of 122.1 pm and a Van der Waals radius of 187 pm. Gallium was predicted by Dmitri Mendeleev in 1871. It was first discovered and isoalted by Hans Christian Oersted in 1825. Elemental Gallium In its elemental form, gallium has a silvery appearance. Gallium is one of three elements that occur naturally as a liquid at room temperature, the other two being mercury and cesium. Gallium does not exist as a free element in nature and is sourced commercially from bauxite and sphalerite. Currently, gallium is used in semiconductor materials for microelectronics and optics. The element name originates from the Latin word 'Gallia', the old name of France, and the word 'Gallus,' meaning rooster. For more information on gallium, including properties, safety data, research, and American Elements' catalog of gallium products, visit the Gallium Information Center.

Arsenic Bohr ModelArsenic (As) atomic and molecular weight, atomic number and elemental symbolArsenic (atomic symbol: As, atomic number: 33) is a Block P, Group 15, Period 4 element with an atomic radius of 74.92160. The number of electrons in each of arsenic's shells is 2, 8, 18, 5 and its electron configuration is [Ar] 3d10 4s2 4p3. The arsenic atom has a radius of 119 pm and a Van der Waals radius of 185 pm. Arsenic was discovered in the early Bronze Age, circa 2500 BC. It was first isolated by Albertus Magnus in 1250 AD. In its elemental form, arsenic is a metallic grey, brittle, crystalline, semimetallic solid.Elemental Arsenic Arsenic is found in numerous minerals including arsenolite (As2O3), arsenopyrite (FeAsS), loellingite (FeAs2), orpiment (As2S3), and realgar (As4S4). Arsenic has numerous applications as a semiconductor and other electronic applications as indium arsenide, silicon arsenide and tin arsenide. Arsenic is finding increasing uses as a doping agent in solid-state devices such as transistors. For more information on arsenic, including properties, safety data, research, and American Elements' catalog of arsenic products, visit the Arsenic Information Center.

Material Safety Data Sheet MSDS
Signal Word Danger
Hazard Statements H301 + H331-H410
Hazard Codes T,N
Risk Codes 23/25-50/53
Safety Precautions 20/21-28-45-60-61
RTECS Number LW8800000
Transport Information UN 1557 6.1/PG 2
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Skull and Crossbones-Acute Toxicity  Environment-Hazardous to the aquatic environment      

Gallium monoarsenide; Arsinidynegallium; gallanylidynearsane

Gallium Acetylacetonate Gallium Acetate Gallium Fluoride Gallium Sputtering Target Gallium Chloride
Gallium Rod Gallium Oxide Pellets Gallium Oxide Nanopowder Gallium Oxide Powder Gallium Pellets
Gadolinium Gallium Garnet-GGG Copper Gallium Sputtering Target Gallium Metal Gallium Foil Gallium Oxide
Show Me MORE Forms of Gallium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Gallium

  • Ultrasonic cavitation of molten gallium: formation of micro- and nano-spheres. Kumar VB, Gedanken A, Kimmel G, Porat Z. Ultrason Sonochem. 2014
  • Retardation Mechanism of Ultrathin Al(2)O(3) Interlayer on Y(2)O(3) Passivated Gallium Nitride Surface. Quah HJ, Cheong KY. ACS Appl Mater Interfaces. 2014
  • Efficacy of gallium maltolate against Lawsonia intracellularis infection in a rabbit model. Sampieri F, Allen AL, Alcorn J, Clark CR, Vannucci FA, Pusterla N, Mapes SM, Ball KR, Dowling PM, Thompson J, Bernstein LR, Gebhart CJ, Hamilton DL. J Vet Pharmacol Ther. 2014
  • Colloidal nickel/gallium nanoalloys obtained from organometallic precursors in conventional organic solvents and in ionic liquids: noble-metal-free alkyne semihydrogenation catalysts. Schütte K, Doddi A, Kroll C, Meyer H, Wiktor C, Gemel C, van Tendeloo G, Fischer RA, Janiak C. Nanoscale. 2014
  • Measuring systolic ankle and toe pressure using the strain gauge technique - a comparison study between mercury and indium-gallium strain gauges. Broholm R, Wiinberg N, Simonsen L. Scand J Clin Lab Invest. 2014
  • Main group bismuth(III), gallium(III) and diorganotin(IV) complexes derived from bis(2-acetylpyrazine)thiocarbonohydrazone: synthesis, crystal structures and biological evaluation. Zhang N, Tai Y, Li M, Ma P, Zhao J, Niu J. Dalton Trans. 2014
  • Slow and Fast Singlet Energy Transfers in BODIPY-gallium(III)corrole Dyads Linked by Flexible Chains. Brizet B, Desbois N, Bonnot A, Langlois A, Dubois A, Barbe JM, Gros CP, Goze C, Denat F, Harvey PD. Inorg Chem. 2014
  • Benefits of NOPO As Chelator in Gallium-68 Peptides, Exemplified by Preclinical Characterization of (68)Ga-NOPO-c(RGDfK). Simeček J, Notni J, Kapp TG, Kessler H, Wester HJ. Mol Pharm. 2014
  • Gallium-68 DOTATOC PET/CT In Vivo Characterization of Somatostatin Receptor Expression in the Prostate. Todorović-Tirnanić MV, Gajić MM, Obradović VB, Baum RP. Cancer Biother Radiopharm. 2014
  • Photodeposition of copper and chromia on gallium oxide: the role of co-catalysts in photocatalytic water splitting. Busser GW, Mei B, Pougin A, Strunk J, Gutkowski R, Schuhmann W, Willinger MG, SchlÃgl R, Muhler M. ChemSusChem. 2014
  • Synthesis and characterization of functional multicomponent nanosized gallium chelated gold crystals. Zambre A, Silva F, Upendran A, Afrasiabi Z, Xin Y, Paulo A, Kannan R. Chem Commun (Camb). 2014
  • Gallium phosphinoarylbisthiolato complexes counteract drug resistance of cancer cells. Fischer-Fodor E, Vălean AM, Virag P, Ilea P, Tatomir C, Imre-Lucaci F, Schrepler MP, Krausz LT, Tudoran LB, Precup CG, Lupan I, Hey-Hawkins E, Silaghi-Dumitrescu L. Metallomics. 2014
  • Demonstrating the capability of the high-performance plasmonic gallium-graphene couple. Losurdo M, Yi C, Suvorova A, Rubanov S, Kim TH, Giangregorio MM, Jiao W, Bergmair I, Bruno G, Brown AS. ACS Nano. 2014
  • Gallium nitrate ameliorates type II collagen-induced arthritis in mice. Choi JH, Lee JH, Roh KH, Seo SK, Choi IW, Park SG, Lim JG, Lee WJ, Kim MH, Cho KR, Kim YJ. Int Immunopharmacol. 2014
  • Electrochemically deposited gallium oxide nanostructures on silicon substrates. Ghazali NM, Mahmood MR, Yasui K, Hashim AM. Nanoscale Res Lett. 2014
  • Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour. Aoki Y, Wiemann C, Feyer V, Kim HS, Schneider CM, Ill-Yoo H, Martin M. Nat Commun. 2014
  • Masking of Lewis acidity trends in the solid-state structures of trichlorido- and tribromido(2,2':6',2''-terpyridine-κ(3)N,N',N'')gallium(III). Kazakov IV, Bodensteiner M, Timoshkin AY. Acta Crystallogr C Struct Chem. 2014
  • Pharmacokinetics of gallium maltolate in Lawsonia intracellularis-infected and uninfected rabbits. Sampieri F, Alcorn J, Allen AL, Clark CR, Vannucci FA, Pusterla N, Mapes S, Ball KR, Dowling PM, Thompson J, Bernstein LR, Gebhart CJ, Hamilton DL. J Vet Pharmacol Ther. 2014
  • Efficient eye-safe neodymium doped composite yttrium gallium garnet crystal laser. Yu H, Wang S, Han S, Wu K, Su L, Zhang H, Wang Z, Xu J, Wang J. Opt Lett. 2014
  • Indium-chlorine and gallium-chlorine tetrasubstituted phthalocyanines in a bulk system, Langmuir monolayers and Langmuir-Blodgett nanolayers - Spectroscopic investigations. Bursa B, Wróbel D, Biadasz A, Kędzierski K, Lewandowska K, Graja A, Szybowicz M, Durmuş M. Spectrochim Acta A Mol Biomol Spectrosc. 2014.

Recent Research & Development for Arsenides

  • RF-to-DC characteristics of direct irradiated on-chip gallium arsenide Schottky diode and antenna for application in proximity communication system. Mustafa F, Hashim AM. Sensors (Basel). 2014
  • Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field. Sallen G, Kunz S, Amand T, Bouet L, Kuroda T, Mano T, Paget D, Krebs O, Marie X, Sakoda K, Urbaszek B. Nat Commun. 2014.
  • A New Layered Iron Arsenide Superconductor: (Ca,Pr)FeAs2. Yakita H, Ogino H, Okada T, Yamamoto A, Kishio K, Tohei T, Ikuhara Y, Gotoh Y, Fujihisa H, Kataoka K, Eisaki H, Shimoyama JI. J Am Chem Soc. 2014 Jan.
  • Corrigendum: Two-dome structure in electron-doped iron arsenide superconductors. Iimura S, Matsuishi S, Sato H, Hanna T, Muraba Y, Kim SW, Kim JE, Takata M, Hosono H. Nat Commun. 2013 Dec.
  • Inelastic Neutron Scattering Study of a Nonmagnetic Collapsed Tetragonal Phase in Nonsuperconducting CaFe_{2}As_{2}: Evidence of the Impact of Spin Fluctuations on Superconductivity in the Iron-Arsenide Compounds. Soh JH, Tucker GS, Pratt DK, Abernathy DL, Stone MB, Ran S, Bud'ko SL, Canfield PC, Kreyssig A, McQueeney RJ, Goldman AI. Phys Rev Lett. 2013.
  • An ab initio study of the electronic structure of boron arsenide, BAs. Magoulas I, Kalemos A. J Chem Phys. 2013 Oct.
  • DNA detection using plasmonic enhanced near-infrared photoluminescence of gallium arsenide. Tang L, Chun IS, Wang Z, Li J, Li X, Lu Y. Anal Chem. 2013 Oct.
  • Effects of a low-level semiconductor gallium arsenide laser on local pathological alterations induced by Bothrops moojeni snake venom. Aranha de Sousa E, Bittencourt JA, Seabra de Oliveira NK, Correia Henriques SV, Dos Santos Picanço LC, Lobato CP, Ribeiro JR, Pereira WL, Carvalho JC, Oliveira da Silva J. Photochem Photobiol Sci. 2013.
  • Formation of gallium arsenide nanostructures in Pyrex glass. Howlader MM, Zhang F, Jamal Deen M. Nanotechnology. 2013.
  • First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Lindsay L, Broido DA, Reinecke TL. Phys Rev Lett. 2013 Jul 12.
  • Formation of gallium arsenide nanostructures in Pyrex glass. Howlader MM, Zhang F, Jamal Deen M. Nanotechnology. 2013 Aug 9.
  • Homologous Series of Rare-Earth Zinc Arsenides REZn2-xAs2n(REAs) (RE = La-Nd, Sm; n = 3, 4, 5, 6). Lin X, Mar A. Inorg Chem. 2013 May 28.
  • Evaluation of the carcinogenicity of gallium arsenide. Bomhard EM, Gelbke HP, Schenk H, Williams GM, Cohen SM. Crit Rev Toxicol. 2013 May 4.
  • Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Cheng CW, Shiu KT, Li N, Han SJ, Shi L, Sadana DK. Nat Commun. 2013.
  • Transmetalation of chromocene by lithium-amide, -phosphide, and -arsenide nucleophiles. Scheuermayer S, Tuna F, Pineda EM, Bodensteiner M, Scheer M, Layfield RA. Inorg Chem. 2013.
  • Magnetic ordering in tetragonal 3d metal arsenides M2As (M = Cr, Mn, Fe): an ab initio investigation. Zhang Y, Brgoch J, Miller GJ. Inorg Chem. 2013 Mar.
  • Effect of doping on the magnetostructural ordered phase of iron arsenides: a comparative study of the resistivity anisotropy in doped BaFe2As2 with doping into three different sites. Ishida S, Nakajima M, Liang T, Kihou K, Lee CH, Iyo A, Eisaki H, Kakeshita T, Tomioka Y, Ito T, Uchida S. J Am Chem Soc. 2013 Feb 27;135(8):3158-63.
  • [A matrix gallium-arsenide detector for roentgenoraphy]. Vorob'ev AP, Golovnia SN, Gorokhov SA, Parahin VV, Polkovnikov MK, Aizenshtat GI, Lelekov MA, Koretskaia OV, Novikov VA, Tolbanov OP, Tiazhev AV, Borodin DV, Osipov IuV. Med Tekh. 2012 Sep-Oct.
  • Susceptibility anisotropy in an iron arsenide superconductor revealed by x-ray diffraction in pulsed magnetic fields. Ruff JP, Chu JH, Kuo HH, Das RK, Nojiri H, Fisher IR, Islam Z. Phys Rev Lett. 2012 Jul 13.
  • Universal heat conduction in the iron arsenide superconductor KFe2As2: evidence of a d-wave state. Reid JP, Tanatar MA, Juneau-Fecteau A, Gordon RT, de Cotret SR, Doiron-Leyraud N, Saito T, Fukazawa H, Kohori Y, Kihou K, Lee CH, Iyo A, Eisaki H, Prozorov R, Taillefer L. Phys Rev Lett.