Skip to Page Content

Gallium Samples

High Purity Ga Samples
CAS 7440-55-3


Product Product Code Request Quote
(2N) 99% Gallium Samples GA-M-02-SAMP Request Quote
(3N) 99.9% Gallium Samples GA-M-03-SAMP Request Quote
(4N) 99.99% Gallium Samples GA-M-04-SAMP Request Quote
(5N) 99.999% Gallium Samples GA-M-05-SAMP Request Quote
(6N) 99.9999% Gallium Samples GA-M-06-SAMP Request Quote
(7N) 99.99999% Gallium Samples GA-M-07-SAMP Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Ga 7440-55-3 23981 MFCD00134045 231-163-8 N/A [Ga] InChI=1S/Ga GYHNNYVSQQEPJS-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Electronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
69.72 Silvery 5.91 g/cm3 N/A 29.78 °C 2403 °C 0.281 W/cm·K
(302.93 K)
17.4 µΩ·cm
(20°C)
1.81 Pauings 0.089 Cal/g/K
(25°C)
254 kJ/mol 5.59 kJ/mol Safety Data Sheet

Gallium SampleGallium samples are suitable for metallurgical analysis, chemical analysis, physical testing, mechanical testing, failure analysis, fire & flammability testing, contaminant identification and weatherization studies. Metallurgical testing is used to determine quality by analyzing the microstructure of a sample under a microscope. American Elements specializes in producing irregular shaped Gallium Samples with the highest possible density and smallest possible average grain sizes for use in Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). Gallium samples are available in dimensions appropriate for numerous testing procedures. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. Gallium samples are suitable for metallurgical analysis, chemical analysis, physical testing, mechanical testing, failure analysis, fire & flammability testing, contaminant identification and weatherization studies. Metallurgical testing is used to determine quality by analyzing the microstructure of a sample under a microscope. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. A wide variety of American Elements products are available in sample form for materials and metallurgical testing procedures. Gallium samples vary in size and thickness.

Gallium (Ga) atomic and molecular weight, atomic number and elemental symbolGallium (atomic symbol: Ga, atomic number: 31) is a Block P, Group 13, Period 4 element with an atomic weight of 69.723.The number of electrons in each of Gallium's shells is 2, 8, 18, 3 and its electron configuration is [Ar] 3d10 4s2 4p1. The gallium atom has a radius of 122.1 pm and a Van der Waals radius of 187 pm. Gallium Bohr ModelGallium was predicted by Dmitri Mendeleev in 1871. It was first discovered and isolated by Lecoq de Boisbaudran in 1875. In its elemental form, gallium has a silvery appearance. Elemental GalliumGallium is one of three elements that occur naturally as a liquid at room temperature, the other two being mercury and cesium. Gallium does not exist as a free element in nature and is sourced commercially from bauxite and sphalerite. Currently, gallium is used in semiconductor devices for microelectronics and optics. The element name originates from the Latin word 'Gallia', the old name of France, and the word 'Gallus,' meaning rooster. For more information on gallium, including properties, safety data, research, and American Elements' catalog of gallium products, visit our Gallium element page.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H314
C
34
26-36/37/39-45
LW8600000
UN 2803 8/PG 3
3
Corrosion-Corrosive to metals        

CUSTOMERS FOR GALLIUM SAMPLES HAVE ALSO LOOKED AT
Gallium Acetylacetonate Gallium Acetate Gallium Fluoride Gallium Antimonide Triethylgallium
Copper Indium Gallium Selenide - CIGS Gallium Arsenide Gallium Oxide Nanopowder Gallium Oxide Powder Gallium Nitride Wafer
Gadolinium Gallium Garnet - GGG Copper Gallium Sputtering Target Trimethylgallium Gallium doped Zinc Oxide - GZO Gallium Oxide
Show Me MORE Forms of Gallium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Gallium

  • Nanoscale Optical Properties of Indium Gallium Nitride/Gallium Nitride Nanodisk-in-Rod Heterostructures. Xiang Zhou, Ming-Yen Lu, Yu-Jung Lu, Eric J. Jones, Shangjr Gwo, and Silvija Gradeak. ACS Nano: February 7, 2015
  • Gallium Plasmonics: Deep Subwavelength Spectroscopic Imaging of Single and Interacting Gallium Nanoparticles. Mark W. Knight, Toon Coenen, Yang Yang, Benjamin J. M. Brenny, Maria Losurdo, April S. Brown, Henry O. Everitt, and Albert Polman. ACS Nano: January 28, 2015
  • Influence of Source and Drain Contacts on the Properties of Indium–Gallium–Zinc-Oxide Thin-Film Transistors based on Amorphous Carbon Nanofilm as Barrier Layer. Dongxiang Luo, Hua Xu, Mingjie Zhao, Min Li, Miao Xu, Jianhua Zou, Hong Tao, Lei Wang, and Junbiao Peng. ACS Appl. Mater. Interfaces: January 26, 2015
  • Insertion of Benzonitrile into Al–N and Ga–N Bonds: Formation of Fused Carbatriaza-Gallanes/Alanes and Their Subsequent Synthesis from Amidines and Trimethyl-Gallium/Aluminum. K. Maheswari, A. Ramakrishna Rao, and N. Dastagiri Reddy. Inorg. Chem.: January 26, 2015
  • Mixed Pentele-Chalcogen Cationic Chains from Aluminum and Gallium Halide Melts. Andreas Eich, Thomas Bredow, and Johannes Beck. Inorg. Chem.: December 30, 2014
  • Temperature Dependent EXAFS Study of Chromium-Doped GaFeO3 at Gallium and Iron Edges. S. Basu, Ripandeep Singh, A. Das, T. Roy, A. Chakrabarti, A. K. Nigam, S. N. Jha, and D. Bhattacharyya. J. Phys. Chem. C: December 24, 2014
  • Solvothermal Synthesis of Gallium–Indium-Zinc-Oxide Nanoparticles for Electrolyte-Gated Transistors. Lídia Santos, Daniela Nunes, Tomás Calmeiro, Rita Branquinho, Daniela Salgueiro, Pedro Barquinha, Luís Pereira, Rodrigo Martins, and Elvira Fortunato. ACS Appl. Mater. Interfaces: December 17, 2014
  • Surface Characterization of Gallium Nitride Modified with Peptides before and after Exposure to Ionizing Radiation in Solution. Nora G. Berg, Michael W. Nolan, Tania Paskova, and Albena Ivanisevic. Langmuir: December 5, 2014
  • Influence of Water on the Interfacial Behavior of Gallium Liquid Metal Alloys. Mohammad R. Khan, Chris Trlica, Ju-Hee So, Michael Valeri, and Michael D. Dickey. ACS Appl. Mater. Interfaces: December 3, 2014
  • Low-Temperature Growth of Crystalline Gallium Nitride Films Using Vibrational Excitation of Ammonia Molecules in Laser-Assisted Metalorganic Chemical Vapor Deposition. Hossein Rabiee Golgir, Yang Gao, Yun Shen Zhou, Lisha Fan, Premkumar Thirugnanam, Kamran Keramatnejad, Lan Jiang, Jean-François Silvain, and Yong Feng Lu. Crystal Growth & Design: November 11, 2014
>