Gadolinia doped Ceria Sputtering Target (GDC)

Linear Formula:

CeO2 • Gd2O3

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Gadolinia doped Ceria Sputtering Target (Gd = 10%)
CEO-GD10-01-ST
Pricing > SDS > Data Sheet >
Gadolinia doped Ceria Sputtering Target (Gd = 20%)
CEO-GD2-01-ST
Pricing > SDS > Data Sheet >
CUSTOMER ADVISORY: American Elements does not supply gadolinium for use in ANY form of GBCA (“Gadolinium-Based Contrast Agents”) or for ANY medical, pharmaceutical or nutritional use whatsoever or for the manufacture, testing, or development of ANY such products.

Gadolinia doped Ceria Sputtering Target (GDC) Properties (Theoretical)

Appearance Target
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A

Gadolinia doped Ceria Sputtering Target (GDC) Health & Safety Information

Signal Word Warning
Hazard Statements H319
Hazard Codes Xi
Precautionary Statements P264-P337+P313
Risk Codes N/A
Safety Statements N/A
Transport Information NONH for all modes of transport
WGK Germany 3
GHS Pictograms

About Gadolinia doped Ceria Sputtering Target (GDC)

American Elements specializes in producing Gadolinia doped Ceria Sputtering Target (GDC), cerium oxide stabilized by various doping levels of gadolinium oxide, solid oxide fuel cell cathode and electrolyte cross section by SEMa material that upon firing forms a highly ionically conductive thin film electrolyte layer for use in solid oxide fuel cell electrochemistry structures. Gadolinium Oxide doped Ceria belongs to a class of doped Ceria compounds with ionic conductivity exceeding Yttria Stabilized Zirconia (YSZ) electrolytes. These include Samarium doped Ceria (SDC) and Yttria doped Ceria (YDC). Even higher conductivity can be achieved with American Elements Scandia doped Zirconia (SCZ) and Yttria doped Bismuth Oxide. Gadolinium Oxide doped Cerium Oxide is also available in a powder for tape casting, air spray, extrusion and sputtering fuel cell applications and as an ink for screen printing. Gadolinia doping levels are available at 10% and 20% and as specified by customer. American Elements provides guidance on firing parameters, doping levels, and thermal expansion matching with American Elements' cathode and anode cell layers.

Gadolinia doped Ceria Sputtering Target (GDC) Synonyms

Cerium(IV) oxide, gadolinium doped; Gadolinium doped ceria; Dioxocerium - gadolinium (1:1) ; gadolinia-doped ceria; cerium oxide stabilized with gadolinum

Chemical Identifiers

Linear Formula CeO2 • Gd2O3
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Payment Methods

American Elements accepts checks, wire transfers, ACH, most major credit and debit cards (Visa, MasterCard, AMEX, Discover) and Paypal.

For the convenience of our international customers, American Elements offers the following additional payment methods:

SOFORT bank tranfer payment for Austria, Belgium, Germany and SwitzerlandJCB cards for Japan and WorldwideBoleto Bancario for BraziliDeal payments for the Netherlands, Germany, Austria, Belgium, Italy, Poland, Spain, Switzerland, and the United KingdomGiroPay for GermanyDankort cards for DenmarkElo cards for BrazileNETS for SingaporeCartaSi for ItalyCarte-Bleue cards for FranceChina UnionPayHipercard cards for BrazilTROY cards for TurkeyBC cards for South KoreaRuPay for India

Related Elements

Cerium

See more Cerium products. Cerium (atomic symbol: Ce, atomic number: 58) is a Block F, Group 3, Period 6 element with an atomic weight of 140.116. The number of electrons in each of cerium's shells is 2, 8, 18, 19, 9, 2 and its electron configuration is [Xe]4f2 6s2. Cerium Bohr ModelThe cerium atom has a radius of 182.5 pm and a Van der Waals radius of 235 pm. In its elemental form, cerium has a silvery white appearance. Cerium is the most abundant of the rare earth metals. It is characterized chemically by having two valence states, the +3 cerous and +4 ceric states. The ceric state is the only non-trivalent rare earth ion stable in aqueous solutions. Elemental CeriumIt is therefore strongly acidic and oxidizing, in addition to being moderately toxic.The cerous state closely resembles the other trivalent rare earths. Cerium is found in the minerals allanite, bastnasite, hydroxylbastnasite, monazite, rhabdophane, synchysite and zircon. Cerium was discovered by Martin Heinrich Klaproth, Jöns Jakob Berzelius, and Wilhelm Hisinger in 1803 and first isolated by Carl Gustaf Mosander in 1839. The element was named after the asteroid Ceres, which itself was named after the Roman god of agriculture.

Gadolinium

See more Gadolinium products. Gadolinium (atomic symbol: Gd, atomic number: 64) is a Block F, Group 3, Period 6 element with an atomic radius of 157.25. Gadolinium Bohr ModelThe number of electrons in each of Gadolinium's shells is [2, 8, 18, 25, 9, 2] and its electron configuration is [Xe] 4f7 5d1 6s2. The gadolinium atom has a radius of 180 pm and a Van der Waals radius of 237 pm. Gadolinium was discovered by Jean Charles Galissard de Marignac in 1880 and first isolated by Lecoq de Boisbaudran in 1886. In its elemental form, gadolinium has a silvery-white appearance. Gadolinium is a rare earth or lanthanide element that possesses unique properties advantageous to specialized applications such as semiconductor fabrication and nuclear reactor shielding. Elemental Gadolinium PictureIt is utilized for both its high magnetic moment (7.94μ B) and in phosphors and scintillator crystals. When complexed with EDTA ligands, it is used as an injectable contrast agent for MRIs. The element is named after the Finnish chemist and geologist Johan Gadolin.

TODAY'S TOP DISCOVERY!

March 28, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
U.S. DOE scientists convert carbon monoxide into methanol using cascade reaction strategy

U.S. DOE scientists convert carbon monoxide into methanol using cascade reaction strategy