Indium Acetylacetonate

In(CH3COCHCOCH3)3
CAS 14405-45-9


Product Product Code Order or Specifications
(2N) 99% Indium Acetylacetonate IN-ACAC-02 Contact American Elements
(3N) 99.9% Indium Acetylacetonate IN-ACAC-03 Contact American Elements
(4N) 99.99% Indium Acetylacetonate IN-ACAC-04 Contact American Elements
(5N) 99.999% Indium Acetylacetonate IN-ACAC-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name SMILES
Identifier
InChI
Identifier
InChI
Key
In(C5H7O2)3 14405-45-9 16687813 MFCD00013494 238-378-6 (z)-4-bis[(z)-1-methyl-
3-oxobut-1-enoxy]
indiganyloxypent-3-en-2-one
[In+3].O=C(/C=C
(\[O-])C)C.[O-]\C(
=C/C(=O)C)C.[O-
]\C(=C/C(=O)C)C
InChI=1S/3C5H8O
2.In/c3*1-4(6)3-5(2
)7;/h3*3,6H,1-2H3;
/q;;;+3/p-3/b3*4-3-;
SKWCW
FYBFZIX
HE-LNTIN
UHCSA-K

PROPERTIES Compound Formula Mol. Wt. Appearance Melting
Point
Boiling
Point
Density

Exact Mass

Monoisotopic Mass Charge MSDS
C15H21InO6 412.15 White to light yellow powder 187-189 °C N/A N/A 412.037691 412.037691 0 Safety Data Sheet

Acetylaceton Formula Diagram (C5H8O2)Indium Acetylacetonate is a Indium source that is soluble in organic solvents as an organometallic compound (also known as metalorganic, organo-inorganic and metallo-organic Acetylacetonate Packaging, Lab Quantitycompounds). The high purity acetylacetonate anion complexes by bonding each oxygen atom to the metallic cation to form a chelate ring; because of this property, acetylacetonates are commonly used in various catalysts and catalytic reagents for organic synthesis, including the fabrication of various shapes of carbon nanostructures (as demonstrated by a 2013 experiment by researchers at the Leibniz Institute for Solid State and Materials Research Dresden) via the use of chemical vapor deposition (CVD) and laser evaporation techniques. It is generally immediately available in most volumes. Ultra high purity and high purity forms may be considered. Indium Acetylacetonate is one of numerous organo-metallic compounds (also known as metalorganic, organo-inorganic and metallo-organic compounds) sold by American Elements under the tradename AE Organo-Metallics™ for uses requiring non-aqueous solubility such as recent solar energy and water treatment applications. Similar results can sometimes also be achieved with Nanoparticles (also see Nanotechnology and Quantum Dots) and by thin film deposition. Note American Elements additionally supplies many materials as solutions. The numerous commercial applications for Indium include making bearing alloys, germanium transistors, rectifiers, and photoconductors. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia)and follows applicable ASTM testing standards.Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Indium (In) atomic and molecular weight, atomic number and elemental symbolIndium (atomic symbol: In, atomic number: 49) is a Block P, Group 13, Period 5 element with an atomic weight of 114.818. The number of electrons in each of indium's shells is [2, 8, 18, 18, 3] and its electron configuration is [Kr] 4d10 5s2 5p1. The indium atom has a radius of 162.6 pm and a Van der Waals radius of 193 pm. Indium was discovered by Ferdinand Reich and Hieronymous Theodor Richter in 1863. Indium Bohr Model It is a relatively rare, extremely soft metal is a lustrous silvery Elemental Indium gray and is both malleable and easily fusible. It has similar chemical properties to gallium such as a low melting point and the ability to wet glass. Fields such as optics and microelectronics that utilize semiconductor technology have wide uses for indium, especially in the form of Indiun Tin Oxide (ITO). Thin films of Copper Indium Gallium Selenide (CIGS) are used in high-performing solar cells. Indium's name is derived from the Latin word indicum meaning violet. For more information on indium, including properties, safety data, research, and American Elements' catalog of indium products, visit the Indium Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H302-H312-H315-H319-H332-H335-H351
Hazard Codes Xn
Risk Codes 20/21/22-36/37/38-40
Safety Precautions 26-36
RTECS Number NL2025000
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity Health Hazard      

INDIUM ACETYLACETONATE SYNONYMS
Indium(III) acetylacetonate; 2,4-Pentanedione indium(III) derivative; In(acac)3; Indium(III) 2,4-pentanedionate; Indium tris[(2Z)-4-oxopent-2-en-2-olate]; (z)-4-bis[(z)-1-methyl-3-oxobut-1-enoxy]indiganyloxypent-3-en-2-one

CUSTOMERS FOR INDIUM ACETYLACETONATE HAVE ALSO LOOKED AT
Show Me MORE Forms of Indium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Indium

  • Ho Young Chung, Kie Young Woo, Su Jin Kim, Tae Geun Kim, Improvement of blue InGaN/GaN light-emitting diodes with graded indium composition wells and barriers, Optics Communications, Volume 331, 15 November 2014
  • Raju Chetty, D.S. Prem Kumar, M. Falmbigl, P. Rogl, S.-W. You, Il-Ho Kim, Ramesh Chandra Mallik, Thermoelectric properties of Indium doped Cu2GeSe3, Intermetallics, Volume 54, November 2014
  • Xingwei Ding, Jianhua Zhang, Weimin Shi, Hao Zhang, Chuanxin Huang, Jun Li, Xueyin Jiang, Zhilin Zhang, Characterization of density-of-states in indium zinc oxide thin-film transistor from temperature stress studies, Materials Science in Semiconductor Processing, Volume 27, November 2014
  • Atasheh Soleimani-Gorgani, Ehsan Bakhshandeh, Farhood Najafi, Effect of dispersant agents on morphology and optical–electrical properties of nano indium tin oxide ink-jet ink, Journal of the European Ceramic Society, Volume 34, Issue 12, October 2014
  • Shihyun Ahn, Anh Huy Tuan Le, Sunbo Kim, Cheolmin Park, Chonghoon Shin, Youn-Jung Lee, Jaehyeong Lee, Chaehwan Jeong, Vinh Ai Dao, Junsin Yi, The effects of orientation changes in indium tin oxide films on performance of crystalline silicon solar cell with shallow-emitter, Materials Letters, Volume 132, 1 October 2014
  • L. Castañeda, A. Maldonado, J. Vega Pérez, M. de la L. Olvera, C. Torres-Torres, Electrical and optical properties of nanostructured indium doped zinc oxide thin films deposited by ultrasonic chemical spray technique, starting from zinc acetylacetonate and indium chloride, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • Zhou Xu, Peng Chen, Zhenlong Wu, Feng Xu, Guofeng Yang, Bin Liu, Chongbin Tan, Lin Zhang, Rong Zhang, Youdou Zheng, Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • Anil Singh, Sujeet Chaudhary, Dinesh K. Pandya, On the temperature dependence of mobility in hydrogenated indium-doped ZnO thin films, Acta Materialia, Volume 77, 15 September 2014
  • G. Mohan Kumar, Jinsub Park, Structural and optical property studies on indium doped ZnO nanostructures for solution based organic–inorganic hybrid p–n junctions, Journal of Colloid and Interface Science, Volume 430, 15 September 2014
  • Ummar Pasha Shaik, M. Ghanashyam Krishna, Single step formation of indium and tin doped ZnO nanowires by thermal oxidation of indium–zinc and tin–zinc metal films: Growth and optical properties, Ceramics International, Volume 40, Issue 8, Part B, September 2014
  • J.J. Ortega, M.A. Aguilar-Frutis, G. Alarcón, C. Falcony, V.H. Méndez-García, J.J. Araiza, Band gap engineering of indium zinc oxide by nitrogen incorporation, Materials Science and Engineering: B, Volume 187, September 2014
  • Wyatt H. Strong, David V. Forbes, Seth M. Hubbard, Investigation of deep level defects in electron irradiated indium arsenide quantum dots embedded in a gallium arsenide matrix, Materials Science in Semiconductor Processing, Volume 25, September 2014
  • Ali A. Orouji, Mohammad Nejaty, Alireza Mohtasham, Novel Indium Arsenide double gate and gate all around nanowire MOSFETs for diminishing the exchange correlation effect: A quantum study, Physica E: Low-dimensional Systems and Nanostructures, Volume 63, September 2014
  • Bobins Augustine, Rafal Sliz, Kimmo Lahtonen, Mika Valden, Risto Myllylä, Tapio Fabritius, Effect of plasma treated Ag/indium tin oxide anode modification on stability of polymer solar cells, Solar Energy Materials and Solar Cells, Volume 128, September 2014
  • N.B. Pawar, S.D. Kharade, S.S. Mali, R.M. Mane, C.K. Hong, P.S. Patil, P.N. Bhosale, Effect of indium (III) content on photoelectrochemical performance of MoBi(2-x)InxS5 thin films, Solid State Sciences, Volume 35, September 2014
  • Ying-Feng Lan, Ying-Hung Chen, Ju-Liang He, Jing-Tang Chang, Microstructural characterization of high-quality indium tin oxide films deposited by thermionically enhanced magnetron sputtering at low temperature, Vacuum, Volume 107, September 2014
  • Siti Zulaikha Ngah Demon, Yoshihiro Miyauchi, Goro Mizutani, Toshinori Matsushima, Hideyuki Murata, Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide, Applied Surface Science, Volume 311, 30 August 2014
  • Udo Steiner, Phase relations and chemical vapor transport of hexagonal indium tungsten bronze InxWO3, Journal of Alloys and Compounds, Volume 605, 25 August 2014
  • Erkan Aydin, Mehmet Sankir, Nurdan Demirci Sankir, Influence of silver incorporation on the structural, optical and electrical properties of spray pyrolyzed indium sulfide thin films, Journal of Alloys and Compounds, Volume 603, 5 August 2014
  • P.D. Szkutnik, H. Roussel, V. Lahootun, X. Mescot, F. Weiss, C. Jiménez, Study of the functional properties of ITO grown by metalorganic chemical vapor deposition from different indium and tin precursors, Journal of Alloys and Compounds, Volume 603, 5 August 2014

Recent Research & Development for Acetylacetonates

  • Sudipta Chatterjee, Sutanuva Mandal, Sucheta Joy, Chen-Hsiung Hung, Sreebrata Goswami, ortho-Carom–N bond fusion in aniline associated with electrophilic chlorination reactions at ruthenium(III) coordinated acetylacetonates, Inorganica Chimica Acta, Volume 374, Issue 1, 1 August 2011
  • János Madarász, Shoji Kaneko, Masayuki Okuya, György Pokol, Comparative evolved gas analyses of crystalline and amorphous titanium(IV)oxo-hydroxo-acetylacetonates by TG-FTIR and TG/DTA-MS, Thermochimica Acta, Volume 489, Issues 1–2, 20 May 2009
  • Satoshi Yoda, Yoko Mizuno, Takeshi Furuya, Yoshihiro Takebayashi, Katsuto Otake, Tomoya Tsuji, Toshihiko Hiaki, Solubility measurements of noble metal acetylacetonates in supercritical carbon dioxide by high performance liquid chromatography (HPLC), The Journal of Supercritical Fluids, Volume 44, Issue 2, March 2008
  • M. Aslam Siddiqi, Rehan A. Siddiqui, Burak Atakan, Thermal stability, sublimation pressures and diffusion coefficients of some metal acetylacetonates, Surface and Coatings Technology, Volume 201, Issues 22–23, 25 September 2007
  • María R. Pedrosa, Jaime Escribano, Rafael Aguado, Virginia Díez, Roberto Sanz, Francisco J. Arnáiz, Dinuclear oxomolybdenum(VI) acetylacetonates: Crystal and molecular structure of Mo2O5(acac)2L2 (L = D2O, DMF), Polyhedron, Volume 26, Issue 14, 31 August 2007
  • S.V. Samoilenkov, M.A. Stefan, G. Wahl, MOCVD of thick YSZ coatings using acetylacetonates, Surface and Coatings Technology, Volume 192, Issue 1, 1 March 2005
  • Thomas Behrsing, Alan M Bond, Glen B Deacon, Craig M Forsyth, Maria Forsyth, Kalpana J Kamble, Brian W Skelton, Allan H White, Cerium acetylacetonates—new aspects, including the lamellar clathrate [Ce(acac)4]·10H2O, Inorganica Chimica Acta, Volume 352, 6 August 2003
  • R Leboda, J Skubiszewska-Zięba, J Rynkowski, Preparation and porous structure of carbon–silica adsorbents obtained on the basis of Ti, Co, Ni, Cr, Zn and Zr acetylacetonates and acetylacetone, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 174, Issue 3, 1 December 2000
  • V.M. Gun'ko, R. Leboda, J. Skubiszewska-Ziȩba, J. Rynkowski, Silica Gel Modified Due to Pyrolysis of Acetylacetone and Metal (Ti, Cr, Co, Ni, Zn, Zr) Acetylacetonates, Journal of Colloid and Interface Science, Volume 231, Issue 1, 1 November 2000
  • V.G Isakova, I.A Baidina, N.B Morozova, I.K Igumenov, γ-Halogenated iridium(III) acetylacetonates, Polyhedron, Volume 19, Issue 9, 15 May 2000