Iridium Bars

High Purity Ir Metal Bars
CAS 7439-88-5

Product Product Code Order or Specifications
(2N) 99% Iridium Bars IR-M-02-BBR Contact American Elements
(3N) 99.9% Iridium Bars IR-M-03-BBR Contact American Elements
(4N) 99.99% Iridium Bars IR-M-04-BBR Contact American Elements
(5N) 99.999% Iridium Bars IR-M-05-BBR Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
Ir 7439-88-5 24852586 23924 MFCD00011062 231-095-9 N/A [Ir] InChI=1S/Ir GKOZUEZYRPOHIO-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
192.22 Gray 22.42 gm/cc N/A 2410 °C 4130°C 1.47 W/cm/K @ 298.2 K 5.3 microhm-cm @ 20°C 2.2 Paulings 0.0317 Cal/g/K @ 25 °C 152 K-cal/gm atom at 4130°C 6.6 Cal/gm mole Safety Data Sheet

American Elements' AE Bullion™ group mints certified high purity Iridium Bars for short and long term physical possession and to allow for exposure and controlled risk to industrial demand fluctuations reflected in the global iridium price. Besides iridium bars, iridium coins and iridium Ingots may be purchased by funds, currency reserves, exchange-traded funds (ETFs), private investors, collectors and hobbyists to take direct physical title and possession of the metal with risk exposure from shortages or chemical/physical technology changes, such as in solar energy, and fuel cell developments, equivalent to movements in the industrial application price of Iridium. American Elements offers bonded short and long term warehouse inventory services for AE Bullion™ coins to investors, funds and collectors who do not wish to take physical custody of the metal or lack secure storage or warehouse capabilities. The lowestEtching of Medieval Minting Equipment and Processes possible bar unit price to Iridium melt value ratio is maintained through state of the art mint and die systems and analytically certified blanks (planchet or flan) refined and pressed to exacting purity and weight. We also produce Iridium as rod, pellets, powder, pieces, disc, granules, and wire, as nanoparticles and in compound forms, such as oxide. Iridium Bars may be purchased in bulk or small quantity. Portfolios of different elemental metal bars or coins may also be structured and purchased from the AE Bullion™ group allowing for strategic risk allocation and indexing across a basket of metals.

Iridium (Ir) atomic and molecular weight, atomic number and elemental symbolIridium (atomic symbol: Ir, atomic number: 77) is a Block D, Group 9, Period 6 element with an atomic weight of 192.217. The number of electrons in each of iridium's shells is [2, 8, 18, 32, 15, 2] and its electron configuration is [Xe] 4f14 5d7 6s2.Iridium Bohr ModelThe iridium atom has a radius of 136 pm and a Van der Waals radius of 202 pm. Iridium was discovered and first isolated by Smithson Tennant in 1803. In its elemental form, Iridium has a silvery white appearance. Iridium is a member of the platinum group of metals. It is the most corrosion resistant metal known and is the second-densest element (after osmium).Elemental Iridium It will not react with any acid and can only be attacked by certain molten salts, such as molten sodium chloride. Iridium is found as an uncombined element and in iridium-osmium alloys. Iridium's name is derived from the Greek goddess Iris, personification of the rainbow, on account of the striking and diverse colors of its salts. For more information on iridium, including properties, safety data, research, and American Elements' catalog of iridium products, visit the Iridium Information Center.

UN 3089 4.1/PG 2
Exclamation Mark-Acute Toxicity Flame-Flammables      

Show Me MORE Forms of Iridium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Iridium

  • Enantioselective domino reaction of CO2, amines and allyl chlorides under iridium catalysis: formation of allyl carbamates. Zhang M, Zhao X, Zheng S. Chem Commun (Camb). 2014.
  • Nanocomposites of iridium oxide and conducting polymers as electroactive phases in biological media. Moral-Vico J, Sánchez-Redondo S, Lichtenstein MP, Suñol C, Casañ-Pastor N. Acta Biomater. 2014.
  • A triple-channel lab-on-a-molecule for triple-anion quantification using an iridium(iii)-imidazolium conjugate. Chen K, Schmittel M. Chem Commun (Camb). 2014.
  • Structure-property relationships based on Hammett constants in cyclometalated iridium(iii) complexes: their application to the design of a fluorine-free FIrPic-like emitter. Frey J, Curchod BF, Scopelliti R, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Baranoff E. Dalton Trans. 2014
  • Asymmetric synthesis of 2,5-disubstituted 3-hydroxypyrrolidines based on stereodivergent intramolecular iridium-catalyzed allylic aminations. Natori Y, Kikuchi S, Kondo T, Saito Y, Yoshimura Y, Takahata H. Org Biomol Chem. 2014.
  • Mechanism of cellular accumulation of an iridium(iii) pentamethylcyclopentadienyl anticancer complex containing a C,N-chelating ligand. Novohradsky V, Liu Z, Vojtiskova M, Sadler PJ, Brabec V, Kasparkova J. Metallomics. 2014.
  • Ruthenium, Rhodium, Osmium, and Iridium Complexes of Osazones (Osazones = Bis-Arylhydrazones of Glyoxal): Radical versus Nonradical States. Patra SC, Weyhermüller T, Ghosh P. Inorg Chem. 2014.
  • A theoretical study on the injection, transport, absorption and phosphorescence properties of heteroleptic iridium(iii) complexes with different ancillary ligands. Shang X, Wan N, Han D, Zhang G. Photochem Photobiol Sci. 2014.
  • Iridium-catalyzed selective α-methylation of ketones with methanol. Ogawa S, Obora Y. Chem Commun (Camb). 2014.
  • Direct observation of reversible electronic energy transfer involving an iridium center. Denisov SA, Cudré Y, Verwilst P, Jonusauskas G, Marín-Suárez M, Fernández-Sánchez JF, Baranoff E, McClenaghan ND. Inorg Chem. 2014.
  • Correction to Iridium(III) Hydrido N-Heterocyclic Carbene-Phosphine Complexes as Catalysts in Magnetization Transfer Reactions. Fekete M, Bayfield OW, Duckett SB, Hart S, Mewis RE, Pridmore N, Rayner PJ, Whitwood A. Inorg Chem. 2014.
  • Distortion/Interaction Analysis Reveals the Origins of Selectivities in Iridium-Catalyzed C-H Borylation of Substituted Arenes and 5-Membered Heterocycles. Green AG, Liu P, Merlic CA, Houk KN. J Am Chem Soc. 2014.
  • Iridium-Catalyzed Intermolecular Amidation of sp3 C-H Bonds: Late-Stage Functionalization of an Unactivated Methyl Group. Kang T, Kim Y, Lee D, Wang Z, Chang S. J Am Chem Soc. 2014.
  • Controlling the Excited State and Photosensitizing Property of a 2-(2-Pyridyl)benzo[b]thiophene-Based Cationic Iridium Complex through Simple Chemical Modification. Takizawa SY, Shimada K, Sato Y, Murata S. Inorg Chem. 2014.
  • Oxygen Atom Transfer to a Half-Sandwich Iridium Complex: Clean Oxidation Yielding a Molecular Product. Turlington CR, White PS, Brookhart M, Templeton JL. J Am Chem Soc. 2014.
  • Electronic Conductivity of Films of Electroflocculated 2 nm Iridium Oxide Nanoparticles. Chow KF, Carducci TM, Murray RW. J Am Chem Soc. 2014.
  • Spontaneous assembly of iridium nanochain-like structures: surface enhanced Raman scattering activity using visible light. Chakrapani K, Sampath S. Chem Commun (Camb). 2014.
  • Iridium-catalyzed ortho-C-H borylation of aromatic aldimines derived from pentafluoroaniline with bis(pinacolate)diboron. Sasaki I, Amou T, Ito H, Ishiyama T. Org Biomol Chem. 2014.
  • Photoluminescence properties of a novel cyclometalated iridium(iii) complex with coumarin-boronate and its recognition of hydrogen peroxide. Li C, Wang S, Huang Y, Wen Q, Wang L, Kan Y. Dalton Trans. 2014.
  • Iridium-mediated regioselective B-h/c-h activation of carborane cage: a facile synthetic route to metallacycles with a carborane backbone. Yao ZJ, Yu WB, Lin YJ, Huang SL, Li ZH, Jin GX. J Am Chem Soc. 2014.