Iridium Rings

Iridium Jewelry & Accessories • Iridium Wedding Bands • Iridium Bracelets • Watchbands and other Settings
Patented Maker of Iridium Jewelry
High Purity Ir Metal Rings
CAS 7439-88-5


Product Product Code Order or Specifications
Pure Iridium 2 mm Ring · Wedding Band IR-M-028-WB.02MM Contact American Elements
Pure Iridium 4 mm Ring · Wedding Band IR-M-028-WB.04MM Contact American Elements
Pure Iridium 6 mm Ring · Wedding Band IR-M-028-WB.06MM Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Ir 7439-88-5 24852586 23924 MFCD00011062 231-095-9 N/A [Ir] InChI=1S/Ir GKOZUEZYRPOHIO-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
192.22 Gray 22.42 gm/cc N/A 2410 °C 4130°C 1.47 W/cm/K @ 298.2 K 5.3 microhm-cm @ 20°C 2.2 Paulings 0.0317 Cal/g/K @ 25 °C 152 K-cal/gm atom at 4130°C 6.6 Cal/gm mole Safety Data Sheet

In September 2009 Americans Elements announced the creation of the first pure Iridium Jewelry filing a patent on the invention. Since their launch Iridium wedding rings have been acquired by people as diverse as a well-known L.A. artist and an important London banker (all of whom shall remain anonymous). Iridium is the lowest tarnishing metal in the universe and will thus hold its unique silver-gray luster longer and under more extreme conditions than even gold, silver and platinum making it the perfect expression of eternal love.

Why might you ask has it taken so long for Iridium jewelry to be created? The answer lies in the high technology properties of Iridium. For example, gold melts at 1,945° F, well within the working range of jewelers. Iridium melts at a staggering 4,435° F, far outside the range a jeweler can work with. Due to this and other elemental properties of the metal, making jewelry from Iridium is extremely difficult and in fact falls within the purview of materials scientists and engineers. As materials scientists, American Elements maintains longstanding expertise producing high tech forms of Iridium for scientific, research and space applications. Now, working with NY and LA based jewelry designers, we have created and patented a pure Iridium ring or wedding band as well as other jewelry settings, bracelets and watchbands of the highest quality. Wholesale arrangements are also available to jewelry manufacturers, retailers and shopping networks.

Rings can be custom manufactured to any established ring size. See a U.S. and European ring chart for standard sizes. AE wedding rings are an innovative and unique statement and are available in palladium and palladium. Custom configurations are also available. Iridium will virtually never change color or oxidize having the highest resistance to corrosion. Being much rarer and more difficult to produce than even platinum (it has a melting point 500° F above even platinum), an iridium wedding ring is an extremely unique and luxurious choice. AE also produce Iridium as rod , pellets , powder , pieces , granules , ingot , wire , and in compound forms, such as oxide.


Iridium Ring - 2mmMens Iridium Wedding RingIridium Wedding Ring - 6mm


Iridium (Ir) atomic and molecular weight, atomic number and elemental symbolIridium (atomic symbol: Ir, atomic number: 77) is a Block D, Group 9, Period 6 element with an atomic weight of 192.217. The number of electrons in each of iridium's shells is [2, 8, 18, 32, 15, 2] and its electron configuration is [Xe] 4f14 5d7 6s2.Iridium Bohr ModelThe iridium atom has a radius of 136 pm and a Van der Waals radius of 202 pm. Iridium was discovered and first isolated by Smithson Tennant in 1803. In its elemental form, Iridium has a silvery white appearance. Iridium is a member of the platinum group of metals. It is the most corrosion resistant metal known and is the second-densest element (after osmium).Elemental Iridium It will not react with any acid and can only be attacked by certain molten salts, such as molten sodium chloride. Iridium is found as an uncombined element and in iridium-osmium alloys. Iridium's name is derived from the Greek goddess Iris, personification of the rainbow, on account of the striking and diverse colors of its salts. For more information on iridium, including properties, safety data, research, and American Elements' catalog of iridium products, visit the Iridium Information Center.



HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H228-H319
F,Xi
11-36
16-26
N/A
UN 3089 4.1/PG 2
3
Exclamation Mark-Acute Toxicity Flame-Flammables      

CUSTOMERS FOR IRIDIUM RINGS HAVE ALSO LOOKED AT
Show Me MORE Forms of Iridium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Iridium

  • Structure-property relationships based on Hammett constants in cyclometalated iridium(iii) complexes: their application to the design of a fluorine-free FIrPic-like emitter. Frey J, Curchod BF, Scopelliti R, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Baranoff E. Dalton Trans. 2014
  • Asymmetric synthesis of 2,5-disubstituted 3-hydroxypyrrolidines based on stereodivergent intramolecular iridium-catalyzed allylic aminations. Natori Y, Kikuchi S, Kondo T, Saito Y, Yoshimura Y, Takahata H. Org Biomol Chem. 2014.
  • Mechanism of cellular accumulation of an iridium(iii) pentamethylcyclopentadienyl anticancer complex containing a C,N-chelating ligand. Novohradsky V, Liu Z, Vojtiskova M, Sadler PJ, Brabec V, Kasparkova J. Metallomics. 2014.
  • Ruthenium, Rhodium, Osmium, and Iridium Complexes of Osazones (Osazones = Bis-Arylhydrazones of Glyoxal): Radical versus Nonradical States. Patra SC, Weyhermüller T, Ghosh P. Inorg Chem. 2014.
  • A theoretical study on the injection, transport, absorption and phosphorescence properties of heteroleptic iridium(iii) complexes with different ancillary ligands. Shang X, Wan N, Han D, Zhang G. Photochem Photobiol Sci. 2014.
  • Iridium-catalyzed selective α-methylation of ketones with methanol. Ogawa S, Obora Y. Chem Commun (Camb). 2014.
  • Direct observation of reversible electronic energy transfer involving an iridium center. Denisov SA, Cudré Y, Verwilst P, Jonusauskas G, Marín-Suárez M, Fernández-Sánchez JF, Baranoff E, McClenaghan ND. Inorg Chem. 2014.
  • Correction to Iridium(III) Hydrido N-Heterocyclic Carbene-Phosphine Complexes as Catalysts in Magnetization Transfer Reactions. Fekete M, Bayfield OW, Duckett SB, Hart S, Mewis RE, Pridmore N, Rayner PJ, Whitwood A. Inorg Chem. 2014.
  • Distortion/Interaction Analysis Reveals the Origins of Selectivities in Iridium-Catalyzed C-H Borylation of Substituted Arenes and 5-Membered Heterocycles. Green AG, Liu P, Merlic CA, Houk KN. J Am Chem Soc. 2014.
  • Iridium-Catalyzed Intermolecular Amidation of sp3 C-H Bonds: Late-Stage Functionalization of an Unactivated Methyl Group. Kang T, Kim Y, Lee D, Wang Z, Chang S. J Am Chem Soc. 2014.
  • Controlling the Excited State and Photosensitizing Property of a 2-(2-Pyridyl)benzo[b]thiophene-Based Cationic Iridium Complex through Simple Chemical Modification. Takizawa SY, Shimada K, Sato Y, Murata S. Inorg Chem. 2014.
  • Oxygen Atom Transfer to a Half-Sandwich Iridium Complex: Clean Oxidation Yielding a Molecular Product. Turlington CR, White PS, Brookhart M, Templeton JL. J Am Chem Soc. 2014.
  • Electronic Conductivity of Films of Electroflocculated 2 nm Iridium Oxide Nanoparticles. Chow KF, Carducci TM, Murray RW. J Am Chem Soc. 2014.
  • Spontaneous assembly of iridium nanochain-like structures: surface enhanced Raman scattering activity using visible light. Chakrapani K, Sampath S. Chem Commun (Camb). 2014.
  • Iridium-catalyzed ortho-C-H borylation of aromatic aldimines derived from pentafluoroaniline with bis(pinacolate)diboron. Sasaki I, Amou T, Ito H, Ishiyama T. Org Biomol Chem. 2014.
  • Photoluminescence properties of a novel cyclometalated iridium(iii) complex with coumarin-boronate and its recognition of hydrogen peroxide. Li C, Wang S, Huang Y, Wen Q, Wang L, Kan Y. Dalton Trans. 2014.
  • Iridium-mediated regioselective B-h/c-h activation of carborane cage: a facile synthetic route to metallacycles with a carborane backbone. Yao ZJ, Yu WB, Lin YJ, Huang SL, Li ZH, Jin GX. J Am Chem Soc. 2014.
  • Sterically Directed Iridium-Catalyzed Hydrosilylation of Alkenes in the Presence of Alkynes. Muchnij JA, Kwaramba FB, Rahaim RJ. Org Lett. 2014.
  • Reversible Interconversion Between a Monomeric Iridium Hydroxo and a Dinuclear Iridium μ-Oxo Complex. Burford RJ, Piers WE, Ess DH, Parvez M. J Am Chem Soc. 2014.
  • Cyclometalated Iridium(III) Complexes for Phosphorescence Sensing of Biological Metal Ions. You Y, Cho S, Nam W. Inorg Chem. 2014.