Potassium Hydroxide

KOH
CAS 1310-58-3


Product Product Code Order or Specifications
(2N) 99% Potassium Hydroxide K-OH-02 Contact American Elements
(2N5) 99.5% Potassium Hydroxide K-OH-025 Contact American Elements
(3N) 99.9% Potassium Hydroxide K-OH-03 Contact American Elements
(3N5) 99.95% Potassium Hydroxide K-OH-035 Contact American Elements
(4N) 99.99% Potassium Hydroxide K-OH-04 Contact American Elements
(5N) 99.999% Potassium Hydroxide K-OH-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
KOH 1310-58-3 14797 MFCD00003553 215-181-3 potassium; hydroxide N/A [K+].[OH-] InChI=1S/K.H2O
/h;1H2/q+1;/p-1
KWYUFKZDYYNOTN-UHFFFAOYSA-M

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
HKO 56.11 White to yellow crystalline solid 380-406 °C 1327 °C 2.04 g/cm3 55.966446 55.966446 0 Safety Data Sheet

Hydroxide Formula Diagram (-OH)Potassium Hydroxide is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. Hydroxide, the OH- anion composed of an oxygen atom bonded to a hydrogen atom, is commonly present in nature and is one of the most widely studied molecules in physical chemistry. Hydroxide compounds have diverse properties and uses, from base catalysis to detection of carbon dioxide. In a watershed 2013 experiment, scientists at JILA (the Joint Institute for Laboratory Astrophysics) achieved evaporative cooling of compounds for the first time using hydroxide molecules, a discovery that may lead to new methods of controlling chemical reactions and could impact a range of disciplines, including atmospheric science and energy production technologies. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia)and follows applicable ASTM testing standards.Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Potassium (K) atomic and molecular weight, atomic number and elemental symbol Elemental PotassiumPotassium (atomic symbol: K, atomic number: 19) is a Block S, Group 1, Period 4 element with an atomic weight of 39.0983. The number of electrons in each of Potassium's shells is [2, 8, 8, 1] and its electron configuration is [Ar] 4s1. The potassium atom has a radius of 227.2 pm and a Van der Waals radius of 275 pm. Potassium was discovered and first isolated by Sir Humphrey Davy in 1807. Potassium is the seventh most abundant element on earth. It is one of the most reactive and electropositive of all metals and rapidly oxidizes. Potassium Bohr ModelAs with other alkali metals, potassium decomposes in water with the evolution of hydrogen; because of its reacts violently with water, it only occurs in nature in ionic salts. In its elemental form, potassium has a silvery gray metallic appearance, but its compounds (such as potassium hydroxide) are more frequently used in industrial and chemical applications. The origin of the element's name comes from the English word 'potash,' meaning pot ashes, and the Arabic word 'qali,' which means alkali. The symbol K originates from the Latin word 'kalium'. For more information on potassium, including properties, safety data, research, and American Elements' catalog of potassium products, visit the Potassium Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H302-H314
C
22-35
26-36/37/39-45
TT2100000
UN 1813 8/PG 2
1
Exclamation Mark-Acute Toxicity Corrosion-Corrosive to metals      

POTASSIUM HYDROXIDE SYNONYMS
Caustic potash, Potash lye, Potassium hydrate

CUSTOMERS FOR POTASSIUM HYDROXIDE HAVE ALSO LOOKED AT
Potassium 2 - Ethylhexanoate Potassium Oxide Potassium Chloride Potassium Acetate Potassium Wire
Potassium Nitrate Potassium Metal Potassium Oxide Pellets Potassium Sodium Alloy Potassium Sputtering Target
Potassium Oxide Nanopowder Potassium Oxide Powder Potassium Foil Silver Potassium Cyanide Potassium Pellets
Show Me MORE Forms of Potassium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Potassium

  • Jorge Omar Gil Posada, Peter J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, Journal of Power Sources, Volume 268, 5 December 2014
  • Renan Azevedo da Rocha, Carolina Leão Quintanilha, Thayná Viana Lanxin, Júlio Carlos Afonso, Cláudio Augusto Vianna, Valdir Gante, José Luiz Mantovano, Production of potassium manganate and barium manganate from spent zinc–MnO2 dry cells via fusion with potassium hydroxide, Journal of Power Sources, Volume 268, 5 December 2014
  • Kaiyou Zhang, Hong Chen, Xue Wang, Donglin Guo, Chenguo Hu, Shuxia Wang, Junliang Sun, Qiang Leng, Synthesis and structure determination of potassium copper selenide nanowires and solid-state supercapacitor application, Journal of Power Sources, Volume 268, 5 December 2014
  • Elena Yazhenskikh, Tatjana Jantzen, Klaus Hack, Michael Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags: Potassium oxide–magnesium oxide–silica, Calphad, Volume 47, December 2014
  • Qingxin Meng, Xiangda Meng, Huishun Chen, Zhongxiang Zhou, Changes in the electroholographic properties of a paraelectric potassium lithium tantalate niobate crystal by electrostriction, Optics Communications, Volume 331, 15 November 2014
  • Xiaojing Cheng, Jiagang Wu, Ting Zheng, Xiaopeng Wang, Binyu Zhang, Dingquan Xiao, Jianguo Zhu, Xiangjian Wang, Xiaojie Lou, Rhombohedral–tetragonal phase coexistence and piezoelectric properties based on potassium–sodium niobate ternary system, Journal of Alloys and Compounds, Volume 610, 15 October 2014
  • Tangyuan Li, Huiqing Fan, Changbai Long, Guangzhi Dong, Sheji Sun, Defect dipoles and electrical properties of magnesium B-site substituted sodium potassium niobates, Journal of Alloys and Compounds, Volume 609, 5 October 2014
  • Caijun Shi, Jianming Yang, Nan Yang, Yuan Chang, Effect of waterglass on water stability of potassium magnesium phosphate cement paste, Cement and Concrete Composites, Volume 53, October 2014
  • F. Askari, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian, Mechanistic approach for evaluation of the corrosion inhibition of potassium zinc phosphate pigment on the steel surface: Application of surface analysis and electrochemical techniques, Dyes and Pigments, Volume 109, October 2014
  • Yawen Wang, Fangfang Duo, Shiqi Peng, Falong Jia, Caimei Fan, Potassium iodate assisted synthesis of titanium dioxide nanoparticles with superior water-dispersibility, Journal of Colloid and Interface Science, Volume 430, 15 September 2014
  • Il Seok Chae, Miso Kim, Yong Soo Kang, Sang Wook Kang, Enhanced CO2 carrier activity of potassium cation with fluorosilicate anions for facilitated transport membranes, Journal of Membrane Science, Volume 466, 15 September 2014
  • Takuya Wada, Takuya Yasutake, Akira Nakasuga, Taro Kinumoto, Tomoki Tumura, Masahiro Toyoda, Preparation of few-layer graphene by the hydroxylation of a potassium–graphite intercalation compound, Carbon, Volume 76, September 2014
  • Wenjuan Wu, Jing Li, Dingquan Xiao, Min Chen, Yingchun Ding, Chuanqi Liu, Defect dipoles-driven ferroelectric behavior in potassium sodium niobate ceramics, Ceramics International, Volume 40, Issue 8, Part B, September 2014
  • Yongshan Tan, Hongfa Yu, Ying Li, Chengyou Wu, Jinmei Dong, Jing Wen, Magnesium potassium phosphate cement prepared by the byproduct of magnesium oxide after producing Li2CO3 from salt lakes, Ceramics International, Volume 40, Issue 8, Part B, September 2014
  • Xiaoxin Zhang, Qingzhi Yan, Shaoting Lang, Min Xia, Changchun Ge, Basic thermal–mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten, Journal of Nuclear Materials, Volume 452, Issues 1–3, September 2014
  • J.X. Liao, X.B. Wei, Z.Q. Xu, P. Wang, Effect of potassium-doped concentration on structures and dielectric performance of barium-strontium-titanate films, Vacuum, Volume 107, September 2014
  • Chung-Yul Yoo, Si Young Jang, Jong Hoon Joo, Ji Haeng Yu, Jong-Nam Kim, Soft chemical synthesis and the role of potassium pentahydrogen bis(phosphate) in a proton conducting composite electrolyte based on potassium dihydrogen phosphate, Journal of Power Sources, Volume 260, 15 August 2014
  • Justyna L. Kowal, Julia K. Kowal, Dalin Wu, Henning Stahlberg, Cornelia G. Palivan, Wolfgang P. Meier, Functional surface engineering by nucleotide-modulated potassium channel insertion into polymer membranes attached to solid supports, Biomaterials, Volume 35, Issue 26, August 2014
  • Rajan Singh, Pankaj K. Patro, A.R. Kulkarni, C.S. Harendranath, Synthesis of nano-crystalline potassium sodium niobate ceramic using mechanochemical activation, Ceramics International, Volume 40, Issue 7, Part B, August 2014
  • Nikolas T. Weissmueller, Heiko A. Schiffter, Andrew J. Pollard, A. Cuneyt Tas, Molten salt synthesis of potassium-containing hydroxyapatite microparticles used as protein substrate, Materials Letters, Volume 128, 1 August 2014

Recent Research & Development for Hydroxides

  • Renan Azevedo da Rocha, Carolina Leão Quintanilha, Thayná Viana Lanxin, Júlio Carlos Afonso, Cláudio Augusto Vianna, Valdir Gante, José Luiz Mantovano, Production of potassium manganate and barium manganate from spent zinc–MnO2 dry cells via fusion with potassium hydroxide, Journal of Power Sources, Volume 268, 5 December 2014
  • Liguo Wang, Fengyou Wang, Xiaodan Zhang, Ning Wang, Yuanjian Jiang, Qiuyan Hao, Ying Zhao, Improving efficiency of silicon heterojunction solar cells by surface texturing of silicon wafers using tetramethylammonium hydroxide, Journal of Power Sources, Volume 268, 5 December 2014
  • Lan Jin, Tengli Wang, Can Cui, Haiqin Wu, He Ren, Min Wei, Controlled assemble of erythrosine B/layered double hydroxide ultrathin film: Preparation, fluorescence properties, and photo-response to bovine serum albumin, Dyes and Pigments, Volume 111, December 2014
  • Fang He, Zhibiao Hu, Kaiyu Liu, Shuirong Zhang, Hongtao Liu, Shangbin Sang, In situ fabrication of nickel aluminum-layered double hydroxide nanosheets/hollow carbon nanofibers composite as a novel electrode material for supercapacitors, Journal of Power Sources, Volume 267, 1 December 2014
  • Jinglin Zhang, Huidi Liu, Pu Shi, Yaoji Li, Langhuan Huang, Wenjie Mai, Shaozao Tan, Xiang Cai, Growth of nickel (111) plane: The key role in nickel for further improving the electrochemical property of hexagonal nickel hydroxide-nickel & reduced graphene oxide composite, Journal of Power Sources, Volume 267, 1 December 2014
  • Xuefei Gong, J.P. Cheng, Fu Liu, Li Zhang, Xiaobin Zhang, Nickel–Cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high-performance pseudocapacitors, Journal of Power Sources, Volume 267, 1 December 2014
  • J. Monnier, H. Chen, S. Joiret, J. Bourgon, M. Latroche, Identification of a new pseudo-binary hydroxide during calendar corrosion of (La, Mg)2Ni7-type hydrogen storage alloys for Nickel–Metal Hydride batteries, Journal of Power Sources, Volume 266, 15 November 2014
  • Songying Liu, Ling Zhou, Liyuan Yao, Liya Chai, Li Li, Guo Zhang, Kankan, Keying Shi, One-pot reflux method synthesis of cobalt hydroxide nanoflake-reduced graphene oxide hybrid and their NOx gas sensors at room temperature, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • Dongyun Zhang, Peixin Zhang, Shenhua Song, Qiuhua Yuan, Ping Yang, Xiangzhong Ren, Simulation of magnesium hydroxide surface and interface, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • Damon E. Turney, Michael Shmukler, Kevin Galloway, Martin Klein, Yasumasa Ito, Tal Sholklapper, Joshua W. Gallaway, Michael Nyce, Sanjoy Banerjee, Development and testing of an economic grid-scale flow-assisted zinc/nickel-hydroxide alkaline battery, Journal of Power Sources, Volume 264, 15 October 2014