Potassium Hydroxide

KOH
CAS 1310-58-3


Product Product Code Order or Specifications
(2N) 99% Potassium Hydroxide K-OH-02 Contact American Elements
(2N5) 99.5% Potassium Hydroxide K-OH-025 Contact American Elements
(3N) 99.9% Potassium Hydroxide K-OH-03 Contact American Elements
(3N5) 99.95% Potassium Hydroxide K-OH-035 Contact American Elements
(4N) 99.99% Potassium Hydroxide K-OH-04 Contact American Elements
(5N) 99.999% Potassium Hydroxide K-OH-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
KOH 1310-58-3 14797 MFCD00003553 215-181-3 potassium; hydroxide N/A [K+].[OH-] InChI=1S/K.H2O
/h;1H2/q+1;/p-1
KWYUFKZDYYNOTN-UHFFFAOYSA-M

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
HKO 56.11 White to yellow crystalline solid 380-406 °C 1327 °C 2.04 g/cm3 55.966446 55.966446 0 Safety Data Sheet

Hydroxide Formula Diagram (-OH)Potassium Hydroxide is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. Hydroxide, the OH- anion composed of an oxygen atom bonded to a hydrogen atom, is commonly present in nature and is one of the most widely studied molecules in physical chemistry. Hydroxide compounds have diverse properties and uses, from base catalysis to detection of carbon dioxide. In a watershed 2013 experiment, scientists at JILA (the Joint Institute for Laboratory Astrophysics) achieved evaporative cooling of compounds for the first time using hydroxide molecules, a discovery that may lead to new methods of controlling chemical reactions and could impact a range of disciplines, including atmospheric science and energy production technologies. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia)and follows applicable ASTM testing standards.Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Potassium (K) atomic and molecular weight, atomic number and elemental symbol Elemental PotassiumPotassium (atomic symbol: K, atomic number: 19) is a Block S, Group 1, Period 4 element with an atomic weight of 39.0983. The number of electrons in each of Potassium's shells is [2, 8, 8, 1] and its electron configuration is [Ar] 4s1. The potassium atom has a radius of 227.2 pm and a Van der Waals radius of 275 pm. Potassium was discovered and first isolated by Sir Humphrey Davy in 1807. Potassium is the seventh most abundant element on earth. It is one of the most reactive and electropositive of all metals and rapidly oxidizes. Potassium Bohr ModelAs with other alkali metals, potassium decomposes in water with the evolution of hydrogen; because of its reacts violently with water, it only occurs in nature in ionic salts. In its elemental form, potassium has a silvery gray metallic appearance, but its compounds (such as potassium hydroxide) are more frequently used in industrial and chemical applications. The origin of the element's name comes from the English word 'potash,' meaning pot ashes, and the Arabic word 'qali,' which means alkali. The symbol K originates from the Latin word 'kalium'. For more information on potassium, including properties, safety data, research, and American Elements' catalog of potassium products, visit the Potassium Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H302-H314
C
22-35
26-36/37/39-45
TT2100000
UN 1813 8/PG 2
1
Exclamation Mark-Acute Toxicity Corrosion-Corrosive to metals      

POTASSIUM HYDROXIDE SYNONYMS
Caustic potash, Potash lye, Potassium hydrate

CUSTOMERS FOR POTASSIUM HYDROXIDE HAVE ALSO LOOKED AT
Potassium 2 - Ethylhexanoate Potassium Oxide Potassium Chloride Potassium Acetate Potassium Wire
Potassium Nitrate Potassium Metal Potassium Oxide Pellets Potassium Sodium Alloy Potassium Sputtering Target
Potassium Oxide Nanopowder Potassium Oxide Powder Potassium Foil Silver Potassium Cyanide Potassium Pellets
Show Me MORE Forms of Potassium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Potassium

  • Dragoslav Ilić, Verica V. Jevtić, Miorad M. Vasojević, Miodrag Ž. Jelić, Ivana D. Radojević, Ljiljana R. Čomić, Slađana B. Novaković, Goran A. Bogdanović, Ivan Potočňák, Srećko R. Trifunović, Stereospecific ligands and their complexes. Part XXI. Synthesis, characterization, circular dichroism and antimicrobial activity of cobalt(III) complexes with some edda-type of ligands. Crystal structure of potassium-Δ-(−)589-s-cis-oxalato-(S,S)-ethylenediamine-N,N′-di-(2-propanoato)-cobaltate(III)-semihydrate, K-Δ-(−)589-s-cis-[Co(S,S-eddp)(ox)]·0.5H2O, Polyhedron, Volume 85, 8 January 2015
  • T. Palacios, J. Reiser, J. Hoffmann, M. Rieth, A. Hoffmann, J.Y. Pastor, Microstructural and mechanical characterization of annealed tungsten (W) and potassium-doped tungsten foils, International Journal of Refractory Metals and Hard Materials, Volume 48, January 2015
  • Prasanna Padigi, Gary Goncher, David Evans, Raj Solanki, Potassium barium hexacyanoferrate – A potential cathode material for rechargeable calcium ion batteries, Journal of Power Sources, Volume 273, 1 January 2015
  • V.G. Goffman, A.V. Gorokhovsky, M.M. Kompan, E.V. Tretyachenko, O.S. Telegina, A.V. Kovnev, F.S. Fedorov, Electrical properties of the potassium polytitanate compacts, Journal of Alloys and Compounds, Volume 615, Supplement 1, 5 December 2014
  • Jorge Omar Gil Posada, Peter J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, Journal of Power Sources, Volume 268, 5 December 2014
  • Renan Azevedo da Rocha, Carolina Leão Quintanilha, Thayná Viana Lanxin, Júlio Carlos Afonso, Cláudio Augusto Vianna, Valdir Gante, José Luiz Mantovano, Production of potassium manganate and barium manganate from spent zinc–MnO2 dry cells via fusion with potassium hydroxide, Journal of Power Sources, Volume 268, 5 December 2014
  • Kaiyou Zhang, Hong Chen, Xue Wang, Donglin Guo, Chenguo Hu, Shuxia Wang, Junliang Sun, Qiang Leng, Synthesis and structure determination of potassium copper selenide nanowires and solid-state supercapacitor application, Journal of Power Sources, Volume 268, 5 December 2014
  • Elena Yazhenskikh, Tatjana Jantzen, Klaus Hack, Michael Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags: Potassium oxide–magnesium oxide–silica, Calphad, Volume 47, December 2014
  • Nicolay Yu. Adonin, Anton Yu. Shabalin, Vadim V. Bardin, Hydrodeboration of potassium polyfluoroaryl(fluoro)borates with alcohols, Journal of Fluorine Chemistry, Volume 168, December 2014
  • C. Balbuena, M.A. Frechero, R.A. Montani, Channel diffusion in a lithium–potassium metasilicate glass using the isoconfigurational ensemble: Towards a scenario for the mixed alkali effect, Journal of Non-Crystalline Solids, Volume 405, 1 December 2014

Recent Research & Development for Hydroxides

  • Guangye Wei, Jingkui Qu, Zhihui Yu, Yongli Li, Qiang Guo, Tao Qi, Mineralizer effects on the synthesis of amorphous chromium hydroxide and chromium oxide green pigment using hydrothermal reduction method, Dyes and Pigments, Volume 113, February 2015
  • Jun-Gill Kang, Bong-Ki Min, Youngku Sohn, Physicochemical properties of praseodymium hydroxide and oxide nanorods, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Yue Yang, Shengming Xu, Ming Xie, Yinghe He, Guoyong Huang, Youcai Yang, Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Haiyan Dong, Harendra S. Parekh, Zhi Ping Xu, Particle size- and number-dependent delivery to cells by layered double hydroxide nanoparticles, Journal of Colloid and Interface Science, Volume 437, 1 January 2015
  • Farahnaz Barahuie, Mohd Zobir Hussein, Shafinaz Abd Gani, Sharida Fakurazi, Zulkarnain Zainal, Synthesis of protocatechuic acid–zinc/aluminium–layered double hydroxide nanocomposite as an anticancer nanodelivery system, Journal of Solid State Chemistry, Volume 221, January 2015
  • Xun-Hui Xiong, Zhi-Xing Wang, Hua-Jun Guo, Xin-Hai Li, Facile synthesis of ultrathin nickel hydroxides nanoflakes on nickel foam for high-performance supercapacitors, Materials Letters, Volume 138, 1 January 2015
  • Aleksandra Pacuła, Paweł Nowak, Wacław Makowski, Robert P. Socha, The influence of layered double hydroxide composition on the morphology, porosity and capacitive properties of nitrogen-doped carbon materials prepared via chemical vapor deposition, Microporous and Mesoporous Materials, Volume 201, 1 January 2015
  • Xin Zhao, Liangmiao Zhang, Pan Xiong, Wenjing Ma, Na Qian, Wencong Lu, A novel method for synthesis of Co–Al layered double hydroxides and their conversions to mesoporous CoAl2O4 nanostructures for applications in adsorption removal of fluoride ions, Microporous and Mesoporous Materials, Volume 201, 1 January 2015
  • Xiaoyan Yin, Zhongfang Li, Suwen Wang, Naibo Chu, Jianhua Yang, Jinqu Wang, Hydrothermal synthesis of hierarchical zeolite T aggregates using tetramethylammonium hydroxide as single template, Microporous and Mesoporous Materials, Volume 201, 1 January 2015
  • Jing Li, Enbo Shangguan, Dan Guo, Meng Tian, Yanbin Wang, Quanmin Li, Zhaorong Chang, Xiao-Zi Yuan, Haijiang Wang, Synthesis, characterization and electrochemical performance of high-density aluminum substituted α-nickel hydroxide cathode material for nickel-based rechargeable batteries, Journal of Power Sources, Volume 270, 15 December 2014