Potassium Selenate

CAS 7790-59-2

Product Product Code Order or Specifications
(2N) 99% Potassium Selenate K-SEAT-02 Contact American Elements
(3N) 99.9% Potassium Selenate K-SEAT-03 Contact American Elements
(4N) 99.99% Potassium Selenate K-SEAT-04 Contact American Elements
(5N) 99.999% Potassium Selenate K-SEAT-05 Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
K2SeO4 7790-59-2 43119764 62680 N/A 232-214-7 potassium selenate N/A [K+].[K+].[O-][Se]([O-])(=O)=O InChI=1S/2K.H2O4Se/c;;1-5(2,3)4/h;;(H2,1,2,3,4)/q2*+1;/p-2 YAZJAPBTUDGMKO-UHFFFAOYSA-L

PROPERTIES Compound Formula Mol. Wt. Appearance Density

Exact Mass

Monoisotopic Mass Charge MSDS
K2O4Se 221.1542 N/A 3.07g/cm3 221.823594 221.823593 Da 0 Safety Data Sheet

Selenate IonPotassium Selenate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Potassium (K) atomic and molecular weight, atomic number and elemental symbol Elemental PotassiumPotassium (atomic symbol: K, atomic number: 19) is a Block S, Group 1, Period 4 element with an atomic weight of 39.0983. The number of electrons in each of Potassium's shells is [2, 8, 8, 1] and its electron configuration is [Ar] 4s1. The potassium atom has a radius of 227.2 pm and a Van der Waals radius of 275 pm. Potassium was discovered and first isolated by Sir Humphrey Davy in 1807. Potassium is the seventh most abundant element on earth. It is one of the most reactive and electropositive of all metals and rapidly oxidizes. Potassium Bohr ModelAs with other alkali metals, potassium decomposes in water with the evolution of hydrogen; because of its reacts violently with water, it only occurs in nature in ionic salts. In its elemental form, potassium has a silvery gray metallic appearance, but its compounds (such as potassium hydroxide) are more frequently used in industrial and chemical applications. The origin of the element's name comes from the English word 'potash,' meaning pot ashes, and the Arabic word 'qali,' which means alkali. The symbol K originates from the Latin word 'kalium'. For more information on potassium, including properties, safety data, research, and American Elements' catalog of potassium products, visit the Potassium Information Center.

Selenium Bohr ModelSelenide(Se) atomic and molecular weight, atomic number and elemental symbolSelenium (atomic symbol: Se, atomic number: 34) is a Block P, Group 16, Period 4 element with an atomic radius of 78.96. The number of electrons in each of Selenium's shells is 2, 8, 18, 6 and its electron configuration is [Ar] 3d10 4s2 4p4. The selenium atom has a radius of 120 pm and a Van der Waals radius of 190 pm. Selenium is a non-metal with several allotropes: a black, vitreous form with an irregular crystal structure; three red-colored forms with monoclinic crystal structures; and a gray form with a hexagonal crystal structure, the most stable and dense form of the element. Elemental Selenium One of the mose common uses for selenium is in glass production; the red tint that it lends to glass neutralizes green or yellow tints from impurities in the glass materials. Selenium was discovered and first isolated by Jöns Jakob Berzelius and Johann Gottlieb Gahn in 1817. The origin of the name Selenium comes from the Greek word "Selênê," meaning moon. For more information on selenium, including properties, safety data, research, and American Elements' catalog of selenium products, visit the Selenium Information Center.

Material Safety Data Sheet MSDS
Signal Word Danger
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number VS6600000
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)


Selenic acid, dipotassium salt, dipotassium selenate, selenic acid, selenic acid dipotassium salt

Potassium 2 - Ethylhexanoate Potassium Oxide Potassium Chloride Potassium Acetate Potassium Wire
Potassium Nitrate Potassium Metal Potassium Oxide Pellets Potassium Sodium Alloy Potassium Sputtering Target
Potassium Oxide Nanopowder Potassium Oxide Powder Potassium Foil Silver Potassium Cyanide Potassium Pellets
Show Me MORE Forms of Potassium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Potassium

  • Jorge Omar Gil Posada, Peter J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, Journal of Power Sources, Volume 268, 5 December 2014
  • Renan Azevedo da Rocha, Carolina Leão Quintanilha, Thayná Viana Lanxin, Júlio Carlos Afonso, Cláudio Augusto Vianna, Valdir Gante, José Luiz Mantovano, Production of potassium manganate and barium manganate from spent zinc–MnO2 dry cells via fusion with potassium hydroxide, Journal of Power Sources, Volume 268, 5 December 2014
  • Kaiyou Zhang, Hong Chen, Xue Wang, Donglin Guo, Chenguo Hu, Shuxia Wang, Junliang Sun, Qiang Leng, Synthesis and structure determination of potassium copper selenide nanowires and solid-state supercapacitor application, Journal of Power Sources, Volume 268, 5 December 2014
  • Elena Yazhenskikh, Tatjana Jantzen, Klaus Hack, Michael Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags: Potassium oxide–magnesium oxide–silica, Calphad, Volume 47, December 2014
  • Qingxin Meng, Xiangda Meng, Huishun Chen, Zhongxiang Zhou, Changes in the electroholographic properties of a paraelectric potassium lithium tantalate niobate crystal by electrostriction, Optics Communications, Volume 331, 15 November 2014
  • Hongyan Ma, Biwan Xu, Zongjin Li, Magnesium potassium phosphate cement paste: Degree of reaction, porosity and pore structure, Cement and Concrete Research, Volume 65, November 2014
  • Xiaojing Cheng, Jiagang Wu, Ting Zheng, Xiaopeng Wang, Binyu Zhang, Dingquan Xiao, Jianguo Zhu, Xiangjian Wang, Xiaojie Lou, Rhombohedral–tetragonal phase coexistence and piezoelectric properties based on potassium–sodium niobate ternary system, Journal of Alloys and Compounds, Volume 610, 15 October 2014
  • Yulin Yang, Jian Ma, Xiaowen Qi, Xiangshuai Meng, Fabrication of nano serpentine-potassium acetate intercalation compound and its effect as additive on tribological properties of the fabric self-lubricating liner, Wear, Volume 318, Issues 1–2, 15 October 2014
  • Tangyuan Li, Huiqing Fan, Changbai Long, Guangzhi Dong, Sheji Sun, Defect dipoles and electrical properties of magnesium B-site substituted sodium potassium niobates, Journal of Alloys and Compounds, Volume 609, 5 October 2014
  • Caijun Shi, Jianming Yang, Nan Yang, Yuan Chang, Effect of waterglass on water stability of potassium magnesium phosphate cement paste, Cement and Concrete Composites, Volume 53, October 2014
  • F. Askari, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian, Mechanistic approach for evaluation of the corrosion inhibition of potassium zinc phosphate pigment on the steel surface: Application of surface analysis and electrochemical techniques, Dyes and Pigments, Volume 109, October 2014
  • Yawen Wang, Fangfang Duo, Shiqi Peng, Falong Jia, Caimei Fan, Potassium iodate assisted synthesis of titanium dioxide nanoparticles with superior water-dispersibility, Journal of Colloid and Interface Science, Volume 430, 15 September 2014
  • Il Seok Chae, Miso Kim, Yong Soo Kang, Sang Wook Kang, Enhanced CO2 carrier activity of potassium cation with fluorosilicate anions for facilitated transport membranes, Journal of Membrane Science, Volume 466, 15 September 2014
  • H. Bahri, I. Danaee, G.R. Rashed, The effect of curing time and curing temperature on the corrosion behavior of nanosilica modified potassium silicate coatings on AA2024, Surface and Coatings Technology, Volume 254, 15 September 2014
  • Takuya Wada, Takuya Yasutake, Akira Nakasuga, Taro Kinumoto, Tomoki Tumura, Masahiro Toyoda, Preparation of few-layer graphene by the hydroxylation of a potassium–graphite intercalation compound, Carbon, Volume 76, September 2014
  • Wenjuan Wu, Jing Li, Dingquan Xiao, Min Chen, Yingchun Ding, Chuanqi Liu, Defect dipoles-driven ferroelectric behavior in potassium sodium niobate ceramics, Ceramics International, Volume 40, Issue 8, Part B, September 2014
  • Yongshan Tan, Hongfa Yu, Ying Li, Chengyou Wu, Jinmei Dong, Jing Wen, Magnesium potassium phosphate cement prepared by the byproduct of magnesium oxide after producing Li2CO3 from salt lakes, Ceramics International, Volume 40, Issue 8, Part B, September 2014
  • Xiaoxin Zhang, Qingzhi Yan, Shaoting Lang, Min Xia, Changchun Ge, Basic thermal–mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten, Journal of Nuclear Materials, Volume 452, Issues 1–3, September 2014
  • J.X. Liao, X.B. Wei, Z.Q. Xu, P. Wang, Effect of potassium-doped concentration on structures and dielectric performance of barium-strontium-titanate films, Vacuum, Volume 107, September 2014
  • Rui-Tao Wen, Gunnar A. Niklasson, Claes G. Granqvist, Electrochromic nickel oxide films and their compatibility with potassium hydroxide and lithium perchlorate in propylene carbonate: Optical, electrochemical and stress-related properties, Thin Solid Films, Volume 565, 28 August 2014

Recent Research & Development for Selenates

  • Vladislav V. Gurzhiy, Olga S. Tyumentseva, Sergey V. Krivovichev, Ivan G. Tananaev, Novel type of molecular connectivity in one-dimensional uranyl compounds: [K@(18-crown-6)(H2O)][(UO2)(SeO4)(NO3)], a new potassium uranyl selenate with 18-crown-6 ether, Inorganic Chemistry Communications, Volume 45, July 2014
  • Theerathad Sakwarathorn, Sangobtip Pongstabodee, Viwat Vchirawongkwin, Lorenz R. Canaval, Andreas O. Tirler, Thomas S. Hofer, Characteristics of selenate in aqueous solution – An ab initio QMCF-MD study, Chemical Physics Letters, Volumes 595–596, 18 March 2014
  • Nouha Loulou Nkhili, Walid Rekik, Tahar Mhiri, Kamran T. Mahmudov, Maximilian N. Kopylovich, Houcine Naïli, Double piperazinediium and 1,4-diazabicyclo[2.2.2]octanediium MII selenates (MII = CoII, NiII, CuII, ZnII) as effective catalysts for Henry reaction, Inorganica Chimica Acta, Volume 412, 1 March 2014
  • Sivan Klas, Donald W. Kirk, Understanding the positive effects of low pH and limited aeration on selenate removal from water by elemental iron, Separation and Purification Technology, Volume 116, 15 September 2013
  • Berceste Beyribey, Jonathan Hallinder, Finn Willy Poulsen, Nikolaos Bonanos, Mogens Mogensen, Studies of rubidium selenate with secondary phase of RbOH under humidified reducing atmosphere, Journal of Alloys and Compounds, Volume 545, 25 December 2012
  • K. Ozga, A.H. Reshak, J. Berdowski, Z. Tylczynski, A. Wojciechowski, A. Slezak, I.V. Kityk, Photoinduced absorption and nonlinear optics of triglycine selenate single crystals under uniaxial pressure, Materials Letters, Volume 65, Issue 11, 15 June 2011
  • Anders Puranen, Mats Jonsson, Rainer Dähn, Daqing Cui, Reduction of selenite and selenate on anoxically corroded iron and the synergistic effect of uranyl reduction, Journal of Nuclear Materials, Volume 406, Issue 2, 15 November 2010
  • Liron Hevroni, Albert Danon, Oxygen isotope exchange during thermal dehydration of copper selenate pentahydrate, Solid State Ionics, Volume 181, Issues 35–36, 9 November 2010
  • D. Marinova, M. Georgiev, D. Stoilova, Vibrational behavior of matrix-isolated ions in Tutton compounds. V. Infrared spectroscopic study of NH4+ and SO42- ions included in zinc sulfates and selenates, Solid State Sciences, Volume 12, Issue 5, May 2010
  • Evert J. Elzinga, Yuanzhi Tang, Jason McDonald, Stephanie DeSisto, Richard J. Reeder, Macroscopic and spectroscopic characterization of selenate, selenite, and chromate adsorption at the solid–water interface of ?-Al2O3, Journal of Colloid and Interface Science, Volume 340, Issue 2, 15 December 2009
  • L. Ktari, M. Abdelhedi, N. Bouhlel, M. Dammak, A. Cousson, Synthesis, calorimetric, structural and conductivity studies in a new thallium selenate tellurate adduct compound, Materials Research Bulletin, Volume 44, Issue 8, 5 August 2009
  • Anders Puranen, Mats Jonsson, Rainer Dähn, Daqing Cui, Immobilization of selenate by iron in aqueous solution under anoxic conditions and the influence of uranyl, Journal of Nuclear Materials, Volume 392, Issue 3, 1 August 2009
  • M. Amri, N. Zouari, T. Mhiri, P. Gravereau, Synthesis, structure determination and calorimetric study of new caesium hydrogen selenate arsenate Cs4(SeO4)(HSeO4)2(H3AsO4), Journal of Alloys and Compounds, Volume 477, Issues 1–2, 27 May 2009
  • Jie Ling, Ginger E. Sigmon, Peter C. Burns, Syntheses, structures, characterizations and charge-density matching of novel amino-templated uranyl selenates, Journal of Solid State Chemistry, Volume 182, Issue 2, February 2009
  • M. Abdelhedi, L. Ktari, M. Dammak, A. Cousson, A.W. Kolsi, DSC, structural single crystal and X-ray powder diffraction study of the ammonium sulfate selenate tellurate mixed solid solution, Journal of Alloys and Compounds, Volume 460, Issues 1–2, 28 July 2008
  • M. Dammak, H. Litaiem, P. Gravereau, T. Mhiri, A.W. Kolsi, X-ray and electrical conductivity studies in the rubidium selenate tellurate, Journal of Alloys and Compounds, Volume 442, Issues 1–2, 13 September 2007
  • Mei-Ling Feng, Heng-Yun Ye, Jiang-Gao Mao, Syntheses, crystal structures and photoluminescence properties of three novel organically bonded indium selenates or selenites, Journal of Solid State Chemistry, Volume 180, Issue 9, September 2007
  • K.J. Mallikarjunaiah, K.C. Paramita, K.P. Ramesh, R. Damle, Study of molecular reorientation and quantum rotational tunneling in tetramethylammonium selenate by 1H NMR, Solid State Nuclear Magnetic Resonance, Volume 32, Issue 1, August 2007
  • M. Dammak, A. Hadrich, T. Mhiri, Structural, dielectric and vibrational studies in the dipotassium sulfate selenate tellurate mixed solid solution, Journal of Alloys and Compounds, Volume 428, Issues 1–2, 31 January 2007
  • M. Dammak, T. Mhiri, A. Cousson, Neutron structural and vibrational studies of dipotassium selenate tellurate, Journal of Alloys and Compounds, Volume 407, Issues 1–2, 5 January 2006