Skip to Page Content

Lithium Ingot

High Purity Li Ingots
CAS 7439-93-2

Product Product Code Request Quote
(2N) 99% Lithium Ingot LI-M-02-I Request Quote
(3N) 99.9% Lithium Ingot LI-M-03-I Request Quote
(4N) 99.99% Lithium Ingot LI-M-04-I Request Quote
(5N) 99.999% Lithium Ingot LI-M-05-I Request Quote

Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
Li 7439-93-2 24873303 3028194 MFCD00134051 231-102-5 N/A [Li] InChI=1S/Li WHXSMMKQMYFTQS-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
6.941 Silvery White 0.534 gm/cc N/A 180.54°C 1342°C 0.848 W/cm/K @ 298.2 K 8.55 microhm-cm @ 0 °C 1.0 Paulings 0.85 Cal/g/K @ 25°C 32.48 K-Cal/gm atom at 1342°C 1.10 Cal/gm mole Safety Data Sheet

American Elements produces metallic Lithium Ingots with the highest possible density. Ingots are generally the least costly metallic form and useful in general applications. Our standard Ingot size is nominally 2-3 cm x 3-8 cm x 6-12 cm. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar, or plate form, as well as other machined shapes and through other processes such as nanoparticles () and in the form of solutions and organometallics. We can also provide Pieces and Shot in smaller ranges. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. See safety data and research below and pricing/lead time above. We also produce Lithium as rod, pellets, powder, pieces, disc, granules, wire, and in compound forms, such as oxide. Other shapes are available by request.

Lithium Bohr ModelLithium (Li) atomic and molecular weight, atomic number and elemental symbolLithium (atomic symbol: Li, atomic number: 3) is a Block S, Group 1, Period 2 element with an atomic weight of 6.94. The number of electrons in each of Lithium's shells is [2, 1] and its electron configuration is [He] 2s1. The lithium atom has a radius of 152 pm and a Van der Waals radius of 181 pm. Lithium was discovered by Johann Arvedson in 1817 and first isolated by William Thomas Brande in 1821. The origin of the name Lithium comes from the Greek wordlithose which means "stone." Lithium is a member of the alkali group of metals. It has the highest specific heat and electrochemical potential of any element on the period table and the lowest density of any elements that are solid at room temperature. Elemental LithiumCompared to other metals, it has one of the lowest boiling points. In its elemental form, lithium is soft enough to cut with a knife; its silvery white appearance quickly darkens when exposed to air. Because of its high reactivity, elemental lithium does not occur in nature. Lithium is the key component of lithium-ion battery technology, which is becoming increasingly more prevalent in electronics. For more information on lithium, including properties, safety data, research, and American Elements' catalog of lithium products, visit the Lithium element page.

UN 1415 4.3/PG 1
Corrosion-Corrosive to metals Flame-Flammables      

Lithium Cobalt Phosphate Lithium Chloride Lithium Nitrate Lithium Pellets a href="linmf.html">Lithium Foil
Lithium Nanoparticles Lithium Wire Lithium Powder Lithium Sputtering Target Lithium Germanium Oxide
Lithium Acetate Lithium Acetylacetonate Lithium Metal Lithium Oxide Lithium Oxide Pellets
Show Me MORE Forms of Lithium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Lithium

  • Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur Batteries. Kim JH, Fu K, Choi J, Kil K, Kim J, Han X, Hu L, Paik U. Sci Rep. 2015 Mar 10
  • Role of Mn Content on the Electrochemical Properties of Nickel-rich Layered LiNi0.8-xCo0.1Mn0.1+xO2 (0.0 ≤ x ≤ 0.08) Cathodes for Lithium-ion Batteries. Zheng J, Kan WH, Manthiram A. ACS Appl Mater Interfaces. 2015 Mar 10.
  • Non-fatal Lithium Intoxication with 5.5 mmol/L Serum Level. Haussmann R, Bauer M, von Bonin S, Lewitzka U. Pharmacopsychiatry. 2015 Mar 12.
  • Intrathyroid parathyroid adenoma in a patient with chronic lithium treatment. Payá Llorente C, Martínez García R, Sospedra Ferrer JR, Durán Bermejo MI, Armañanzas Villena E. Cir Esp. 2015 Mar 5.
  • Assessment of the Internal Fit of Lithium Disilicate Crowns Using Micro-CT. Alfaro DP, Ruse ND, Carvalho RM, Wyatt CC. J Prosthodont. 2015 Mar 5.
  • Solvated Graphene Frameworks as High-Performance Anodes for Lithium-Ion Batteries. Xu Y, Lin Z, Zhong X, Papandrea B, Huang Y, Duan X. Angew Chem Int Ed Engl. 2015 Mar 10.
  • Improved Hole-Transporting Property via HAT-CN for Perovskite Solar Cells without Lithium Salts. Ma Y, Chung YH, Zheng L, Zhang D, Yu X, Xiao L, Chen Z, Wang S, Qu B, Gong Q, Zou D. ACS Appl Mater Interfaces. 2015 Mar 11.
  • Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning. Ryu J, Choi S, Bok T, Park S. Nanoscale. 2015 Mar 16.
  • Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries. Liu L, An M, Yang P, Zhang J. Sci Rep. 2015 Mar 12
  • Covalent Attachment of Anderson-Type Polyoxometalates to Single-Walled Carbon Nanotubes Gives Enhanced Performance Electrodes for Lithium Ion Batteries. Ji Y, Hu J, Huang L, Chen W, Streb C, Song YF. Chemistry. 2015 Mar 12.
  • One step synthesis of Si@C nanoparticles by laser pyrolysis: high capacity anode material for lithium ion batteries. Sourice J, Quinsac A, Leconte Y, Sublemontier O, Porcher W, Haon C, Bordes A, De Vito E, Boulineau A, Jouanneau Si Larbi S, Herlin-Boime N, Reynaud C. ACS Appl Mater Interfaces. 2015 Mar 11.
  • Molecular effects of lithium are partially mimicked by inositol-monophosphatase (IMPA)1 knockout mice in a brain region-dependent manner. O D, Y S, L T, Y B, R H B, G A, A N A. Eur Neuropsychopharmacol. 2014 Aug 7.
  • Energy transfer based emission analysis of (Tb3+, Sm3+): Lithium zinc phosphate glasses. Parthasaradhi Reddy C, Naresh V, Ramaraghavulu R, Rudramadevi BH, Ramakrishna Reddy KT, Buddhudu S. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Feb 26
  • A Si-MnOOH composite with superior lithium storage properties. Zhong H, Yang Y, Ding F, Wang D, Zhou Y, Zhan H. Chem Commun (Camb). 2015 Mar 9.
  • A New Method for Quantitative Marking of Deposited Lithium by Chemical Treatment on Graphite Anodes in Lithium-Ion Cells. Krämer Y, Birkenmaier C, Feinauer J, Hintennach A, Bender CL, Meiler M, Schmidt V, Dinnebier RE, Schleid T. Chemistry. 2015 Mar 12.
  • Lithium, Vanadium and Chromium Uptake Ability of Brassica juncea from Lithium Mine Tailings. Elektorowicz M, Keropian Z. Int J Phytoremediation. 2015
  • Microshear Bond Strength of Resin Cements to Lithium Disilicate Substrates as a Function of Surface Preparation. Lise D, Perdigão J, Van Ende A, Zidan O, Lopes G. Oper Dent. 2015 Mar 6.
  • Lithium-cyclo-difluoromethane-1,1-bis(sulfonyl)imide as a stabilizing electrolyte additive for improved high voltage applications in lithium-ion batteries. Murmann P, Streipert B, Kloepsch R, Ignatiev N, Sartori P, Winter M, Cekic-Laskovic I. Phys Chem Chem Phys. 2015 Mar 11.
  • Exhibition of the Brønsted acid-base character of a Schiff base in palladium(ii) complex formation: lithium complexation, fluxional properties and catalysis of Suzuki reactions in water. Kumar R, Mani G. Dalton Trans. 2015 Mar 16.
  • Core-Shell Ti@Si Coaxial Nanorod Arrays Formed Directly on Current Collectors for Lithium-Ion Batteries. Meng X, Deng D. ACS Appl Mater Interfaces. 2015 Mar 6.