Lithium Deuteride

LiD
CAS 13587-16-1


Product Product Code Order or Specifications
(2N) 99% Lithium Deuteride LI-HD-02 Contact American Elements
(3N) 99.9% Lithium Deuteride LI-HD-03 Contact American Elements
(4N) 99.99% Lithium Deuteride LI-HD-04 Contact American Elements
(5N) 99.999% Lithium Deuteride LI-HD-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
LiD 13587-16-1 24879454 6914554 MFCD00011091 237-018-5 lithium deuteride N/A [Li+].[2H-] InChI=1S/Li.H/q+1;-1/i;1+1 SRTHRWZAMDZJOS-IEOVAKBOSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density

Exact Mass

Monoisotopic Mass Charge MSDS
DLi 8.96 g/mol Yellow, gray, purple, or brown powder and/or chunks N/A 9.030106 9.030106 0 Safety Data Sheet

Lithium Deuteride is generally immediately available in most volumes. American Elements offers a broad range of products for hydrogen storage research, advanced fuel cells and battery applications. Hydrogen can easily be generated from renewable energy sources and is the most abundant element in the universe. Hydrogen is produced from various sources such as fossil fuels, water and renewables. Hydrogen is nonpolluting and forms water as a harmless byproduct during use. The challenges associated with the use of hydrogen as a form of energy include developing safe, compact, reliable, and cost-effective hydrogen storage and delivery technologies. Currently, hydrogen can be stored in these three forms: Compressed Hydrogen, Liquid Hydrogen and Chemical Storage. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Lithium Bohr ModelLithium (Li) atomic and molecular weight, atomic number and elemental symbolLithium (atomic symbol: Li, atomic number: 3) is a Block S, Group 1, Period 2 element with an atomic weight of 6.94. The number of electrons in each of Lithium's shells is [2, 1] and its electron configuration is [He] 2s1. The lithium atom has a radius of 152 pm and a Van der Waals radius of 181 pm. Lithium was discovered by Johann Arvedson in 1817 and first isolated by William Thomas Brande in 1821. The origin of the name Lithium comes from the Greek word "lithose" which means "stone." Lithium is a member of the alkali group of metals. It has the highest specific heat and electrochemical potential of any element on the period table and the lowest density of any elements that are solid at room temperature. Elemental LithiumCompared to other metals, it has one of the lowest boiling points. In its elemental form, lithium is soft enough to cut with a knife; its silvery white appearance quickly darkens when exposed to air. Because of its high reactivity, elemental lithium does not occur in nature. Lithium is the key component of lithium-ion battery technology, which is becoming increasingly more prevalent in electronics. For more information on lithium, including properties, safety data, research, and American Elements' catalog of lithium products, visit the Lithium Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Danger
Hazard Statements H260-H314
Hazard Codes F,C
Risk Codes 11-14-34
Safety Precautions 16-26-36/37/39-45-7/9
RTECS Number N/A
Transport Information UN 1414 4.3/PG 1
WGK Germany 2
Globally Harmonized System of
Classification and Labelling (GHS)
Flame-Flammables Corrosion-Corrosive to metals      

LITHIIUM DEUTERIDE SYNONYMS
Lithium hydride-d

CUSTOMERS FOR LITHIIUM DEUTERIDE HAVE ALSO LOOKED AT
Lithium Cobalt Phosphate Lithium Chloride Lithium Nitrate Lithium Pellets Lithium Foil
Lithium Nanoparticles Lithium Wire Lithium Powder Lithium Sputtering Target Lithium Germanium Oxide
Lithium Acetate Lithium Acetylacetonate Lithium Metal Lithium Oxide Lithium Oxide Pellets
Show Me MORE Forms of Lithium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Lithium

  • Qingshui Xie, Yating Ma, Xiaoqiang Zhang, Laisen Wang, Guanghui Yue, Dong-Liang Peng, ZnO/Ni/C composite hollow microspheres as anode materials for lithium ion batteries, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Jie Li, Xingxing Zhao, Zhian Zhang, Yanqing Lai, Facile synthesis of hollow carbonized polyaniline spheres to encapsulate selenium for advanced rechargeable lithium–selenium batteries, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Qiao Liu, Zhiqiang Guo, Hongfei Han, Hongbo Tong, Xuehong Wei, Lithium, magnesium, zinc complexes supported by tridentate pincer type pyrrolyl ligands: Synthesis, crystal structures and catalytic activities for the cyclotrimerization of isocyanates, Polyhedron, Volume 85, 8 January 2015
  • Meng Yang, Xiangyu Zhao, Liqun Ma, Hui Yang, Xiaodong Shen, Yajuan Bian, Electrochemical performance of nanocrystalline Li2CoTiO4 cathode materials for lithium ion batteries, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • Renheng Wang, Xinhai Li, Zhixing Wang, Huajun Guo, Tao Hou, Guochun Yan, Bin Huang, Lithium carbonate as an electrolyte additive for enhancing the high-temperature performance of lithium manganese oxide spinel cathode, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • Enshan Han, Qiming Jing, Lingzhi Zhu, Guowei Zhang, Shuqian Ma, The effects of sodium additive on Li1.17Ni0.10Co0.10Mn0.63O2 for lithium ion batteries, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • Fang Fu, Yiyin Huang, Peng Wu, Yakun Bu, Yaobing Wang, Jiannian Yao, Controlled synthesis of lithium-rich layered Li1.2Mn0.56Ni0.12Co0.12O2 oxide with tunable morphology and structure as cathode material for lithium-ion batteries by solvo/hydrothermal methods, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • A.P. Voitovich, V.S. Kalinov, A.P. Stupak, A.N. Novikov, L.P. Runets, Near-surface layer radiation color centers in lithium fluoride nanocrystals: Luminescence and composition, Journal of Luminescence, Volume 157, January 2015
  • G.D. Patra, S.G. Singh, A.K. Singh, M. Tyagi, D.G. Desai, B. Tiwari, S. Sen, S.C. Gadkari, Silver doped lithium tetraborate (Li2B4O7) single crystals as efficient dosimeter material with sub-micro-Gy sensitivity, Journal of Luminescence, Volume 157, January 2015
  • Xue Li, Qian Xiao, Bo Liu, Huangchang Lin, Jinbao Zhao, One-step solution-combustion synthesis of complex spinel titanate flake particles with enhanced lithium-storage properties, Journal of Power Sources, Volume 273, 1 January 2015

Recent Research & Development for Hydrides

  • A.Y. Polyakov, N.B. Smirnov, E.B. Yakimov, A.S. Usikov, H. Helava, K.D. Shcherbachev, A.V. Govorkov, Yu N. Makarov, In-Hwan Lee, Electrical, optical, and structural properties of GaN films prepared by hydride vapor phase epitaxy, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • L. Wang, K. Young, J. Nei, D. Pawlik, K.Y.S. Ng, Hydrogenation of AB5 and AB2 metal hydride alloys studied by in situ X-ray diffraction, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Rongfeng Li, Peizhen Xu, Yamin Zhao, Jing Wan, Xiaofang Liu, Ronghai Yu, The microstructures and electrochemical performances of La0.6Gd0.2Mg0.2Ni3.0Co0.5−xAlx (x=0–0.5) hydrogen storage alloys as negative electrodes for nickel/metal hydride secondary batteries, Journal of Power Sources, Volume 270, 15 December 2014
  • Andreas G. Yiotis, Michael E. Kainourgiakis, Lefteris I. Kosmidis, Georgia C. Charalambopoulou, Athanassios K. Stubos, Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems, Journal of Power Sources, Volume 269, 10 December 2014
  • E.R. Pinatel, M. Corno, P. Ugliengo, M. Baricco, Effects of metastability on hydrogen sorption in fluorine substituted hydrides, Journal of Alloys and Compounds, Volume 615, Supplement 1, 5 December 2014
  • M.O.T. da Conceição, D.S. dos Santos, Catalytic effect of chlorides compounds on hydrogen sorption properties of magnesium hydride, Journal of Alloys and Compounds, Volume 615, Supplement 1, 5 December 2014
  • W. Qin, J.A. Szpunar, N.A.P. Kiran Kumar, J. Kozinski, Microstructural criteria for abrupt ductile-to-brittle transition induced by δ-hydrides in zirconium alloys, Acta Materialia, Volume 81, December 2014
  • Zhaobin Feng, Zhanhong Yang, Bin Yang, Zheng Zhang, Xiaoe Xie, The application of Co–Al-hydrotalcite as a novel additive of positive material for nickel–metal hydride secondary cells, Journal of Power Sources, Volume 266, 15 November 2014
  • J. Monnier, H. Chen, S. Joiret, J. Bourgon, M. Latroche, Identification of a new pseudo-binary hydroxide during calendar corrosion of (La, Mg)2Ni7-type hydrogen storage alloys for Nickel–Metal Hydride batteries, Journal of Power Sources, Volume 266, 15 November 2014
  • Bin Wang, Zhide Zhao, Wei Xu, Yanpin Sui, Guanghui Yu, Influence of annealing porous templates in an ammonia atmosphere on gallium nitride growth behaviors in hydride vapor phase epitaxy, Materials Science in Semiconductor Processing, Volume 27, November 2014