Skip to Page Content

Molybdenum Chunk

High Purity Moly Chunk
CAS 7439-98-7


Product Product Code Request Quote
(2N) 99% Molybdenum Chunk MO-M-02-CK Request Quote
(3N) 99.9% Molybdenum Chunk MO-M-03-CK Request Quote
(4N) 99.99% Molybdenum Chunk MO-M-04-CK Request Quote
(5N) 99.999% Molybdenum Chunk MO-M-05-CK Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Mo 7439-98-7 24852068 23932 MFCD00003465 231-107-2 N/A [Mo] InChI=1S/Mo ZOKXTWBITQBERF-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
95.94 Silvery 10280 kg/m³ N/A 2623 °C 4639 °C 1.38 W/cm/K @ 298.2 K 5.2 microhm-cm @ 0 °C 1.9 Paulings 0.0599 Cal/g/K @ 25 °C 128 K-Cal/gm atom at 4612°C 6.6 Cal/gm mole Safety Data Sheet

High Purity ChunkAmerican Elements specializes in producing high purity Molybdenum Chunks are produced using crystallization, solid state and other ultra high purification processes such as sublimation. Standard Chunk pieces are amorphous uniform pieces ranging in size from 5-15 mm. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into granules, rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles and in the form of solutions and organometallics. Molybdenum as rod, pellets, powder, pieces, disc, ingot, wire, and in compound forms, such as oxide. Other shapes are available by request.

Molybdenum (Mo) atomic and molecular weight, atomic number and elemental symbolMolybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust.Elemental Molybdenum It has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead. For more information on molybdenum, including properties, safety data, research, and American Elements' catalog of molybdenum products, visit the Molybdenum element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H228
F
11
9-16-36/37/39
QA4680000
UN 3089 4.1/PG 2
nwg
Flame-Flammables        

CUSTOMERS FOR MOLYBDENUM CHUNK HAVE ALSO LOOKED AT
Molybdenum Nanoparticles Molybdenum Rod Nickel Molybdenumv Alloy Titanium Molybdenum Alloy Molybdenum Sputtering Target
Molybdenum Oxide Molybdenum Powder Molybdenum Acetate Molybdenum Wire Molybdenum Oxide Pellets
Molybdenum Pellets Molybdenum Sulfate Molybdenum Chloride Molybdenum Metal Molybdenum Foil
Show Me MORE Forms of Molybdenum

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Molybdenum

  • Molybdenum Carbide Nanocatalysts at work in the In-situ Environment: a DFTB and QM(DFTB)/MM Study. Liu X, Salahub DR. J Am Chem Soc. 2015 Mar 16.
  • Investigation of molybdenum cofactor deficiency due to MOCS2 deficiency in a newborn baby. Edwards M, Roeper J, Allgood C, Chin R, Santamaria J, Wong F, Schwarz G, Whitehall J. Meta Gene. 2015 Jan 31
  • Cloning and functional validation of molybdenum cofactor sulfurase gene from Ammopiptanthus nanus. Yu HQ, Zhang YY, Yong TM, Liu YP, Zhou SF, Fu FL, Li WC. Plant Cell Rep. 2015 Feb 27.
  • Evolution of molybdenum nitrogenase during the transition from anaerobic to aerobic metabolism. Boyd ES, Garcia Costas AM, Hamilton TL, Mus F, Peters JW. J Bacteriol. 2015 Mar 2.
  • Well-constructed single-layer molybdenum disulfide nanorose cross-linked by three dimensional-reduced graphene oxide network for superior water splitting and lithium storage property. Zhao Y, Kuai L, Liu Y, Wang P, Arandiyan H, Cao S, Zhang J, Li F, Wang Q, Geng B, Sun H. Sci Rep. 2015 Mar 4
  • Exploring atomic defects in molybdenum disulphide monolayers. Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, Yuan J, Zhang Z. Nat Commun. 2015 Feb 19
  • C-terminal glycine-gated radical initiation by GTP 3',8-cyclase in the molybdenum cofactor biosynthesis. Hover BM, Yokoyama K. J Am Chem Soc. 2015 Mar 11
  • Spin currents and filtering behavior in zigzag graphene nanoribbons with adsorbed molybdenum chains. García-Fuente A, Gallego LJ, Vega A. J Phys Condens Matter. 2015 Mar 13
  • Enantioselective Synthesis of Macrocyclic Heterobiaryl Derivatives of Molecular Asymmetry by Molybdenum-Catalyzed Asymmetric Ring-Closing Metathesis. Okayama Y, Tsuji S, Toyomori Y, Mori A, Arae S, Wu WY, Takahashi T, Ogasawara M. Angew Chem Int Ed Engl. 2015 Feb 23.
  • Fate and Transport of Molybdenum Disulfide Nanomaterials in Sand Columns. Lanphere JD, Luth CJ, Guiney LM, Mansukhani ND, Hersam MC, Walker SL. Environ Eng Sci. 2015 Feb 1
  • Molybdenum deprivation, purine ingestion and an astrocyte-associated motor neurone syndrome in sheep: assumed clinical effects of inosine. Bourke C. Aust Vet J. 2015 Mar
  • Ligand assisted carbon dioxide activation and hydrogenation using molybdenum and tungsten amides. Chakraborty S, Blacque O, Berke H. Dalton Trans. 2015 Mar 10.
  • Annealing and transport studies of suspended molybdenum disulfide devices. Wang F, Stepanov P, Gray M, Ning Lau C. Nanotechnology. 2015 Mar 13
  • Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Liang Y, Yoo HD, Li Y, Shuai J, Calderon HA, Robles Hernandez FC, Grabow LC, Yao Y. Nano Lett. 2015 Mar 11
  • Ultra-orphan diseases: a quantitative analysis of the natural history of molybdenum cofactor deficiency. Mechler K, Mountford WK, Hoffmann GF, Ries M. Genet Med. 2015 Mar 12.
  • Photophysical Studies of Metal to Ligand Charge Transfer Involving Quadruply Bonded Complexes of Molybdenum and Tungsten. Chisholm MH, Brown-Xu SE, Spilker TF. Acc Chem Res. 2015 Feb 19.
  • High-Performance Hybrid Buffer Layer Using 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile/Molybdenum Oxide in Inverted Top-Emitting Organic Light-Emitting Diodes. Park CH, Lee HJ, Hwang JH, Kim KN, Shim YS, Jung SG, Park CH, Park YW, Ju BK. ACS Appl Mater Interfaces. 2015 Mar 11.
  • Better Catalysts through Microscopy: Mesoscale M1/M2 Intergrowth in Molybdenum-Vanadium Based Complex Oxide Catalysts for Propane Ammoxidation. He Q, Woo J, Belianinov A, Guliants VV, Borisevich AY. ACS Nano. 2015 Mar 11.
  • Spatial distribution patterns of molybdenum (Mo) concentrations in potable groundwater in Northern Jordan. Al Kuisi M, Al-Hwaiti M, Mashal K, Abed AM. Environ Monit Assess. 2015 Mar
  • Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Wu HB, Xia BY, Yu L, Yu XY, Lou XW. Nat Commun. 2015 Mar 11