Molybdenum Sulfide

MoS2
CAS 1317-33-5


Product Product Code Order or Specifications
(2N) 99% Molybdenum Sulfide MO-S-02 Contact American Elements
(2N5) 99.5% Molybdenum Sulfide MO-S-025 Contact American Elements
(3N) 99.9% Molybdenum Sulfide MO-S-03 Contact American Elements
(3N5) 99.95% Molybdenum Sulfide MO-S-035 Contact American Elements
(4N) 99.99% Molybdenum Sulfide MO-S-04 Contact American Elements
(5N) 99.999% Molybdenum Sulfide MO-S-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
MoS2 1317-33-5 24854060 14823 MFCD00003470 215-263-9 bis(sulfanylidene)molybdenum N/A [Mo].S InChI=1S/Mo.
H2S/h;1H2
QYSJWHFJGCFRDE-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
MoS2 160.07 black solid 1,185° C
(2,165° F)
N/A 5.06 g/cm3 161.849549 161.849549 0 Safety Data Sheet

Sulfide IonMolybdenum Sulfide or Molybdenum Disulfide is a moderately water and acid soluble Molybdenum source for uses compatible with sulfates. Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and deposited utilizing sputtering targets and evaporation materials for uses such as solar energy materials and fuel cells. Molybdenum Sulfide is generally immediately available in most volumes. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale (See also Nanotechnology Information and Quantum Dots) elemental powders and suspensions, as alternative high surface area forms, may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopeia/British Pharmacopeia) and follows applicable ASTM testing standards. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Molybdenum (Mo) atomic and molecular weight, atomic number and elemental symbolMolybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust.Elemental Molybdenum It has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead. For more information on molybdenum, including properties, safety data, research, and American Elements' catalog of molybdenum products, visit the Molybdenum Information Center.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne]3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777 when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

MOLYBDENUM SULFIDE SYNONYMS
Molybdenum(IV) sulfide, Molybdenite, Molykote, hydrogen sulfide; molybdenum, Molybdenum disulphide, Molykote, bis(sulfanylidene)molybdenum, Molysulfide, Nichimoly C, Sumipowder PA, Molykote Z, disulfanylidene molybdenum, dithioxomolybdenum, molybdenum disulfide

CUSTOMERS FOR MOLYBDENUM SULFIDE HAVE ALSO LOOKED AT
Molybdenum Nanoparticles Molybdenum Rod Nickel Molybdenum Alloy
Titanium Molybdenum Alloy
Molybdenum Sputtering Target
Molybdenum Oxide Molybdenum Powder Molybdenum Acetate Molybdenum Wire Molybdenum Oxide Pellets
Molybdenum Pellets Molybdenum Sulfate Molybdenum Chloride Molybdenum Metal Molybdenum Foil
Show Me MORE Forms of Molybdenum

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Molybdenum

  • Xiao Jin, Weifu Sun, Zihan Chen, Yue Li, Pinjiang Li, Xingdao He, Yongbiao Yuan, Shibing Zou, Yuancheng Qin, Qinghua Li, Efficient electron/hole transport in inorganic/organic hybrid solar cells by lithium ion and molybdenum trioxide codoping, Journal of Power Sources, Volume 268, 5 December 2014
  • S. Imran U. Shah, Andrew L. Hector, John R. Owen, Redox supercapacitor performance of nanocrystalline molybdenum nitrides obtained by ammonolysis of chloride- and amide-derived precursors, Journal of Power Sources, Volume 266, 15 November 2014
  • Omid Torabi, Mohammad Hossein Golabgir, Hamid Tajizadegan, Hamid Torabi, A study on mechanochemical behavior of MoO3–Mg–C to synthesize molybdenum carbide, International Journal of Refractory Metals and Hard Materials, Volume 47, November 2014
  • Lin Ma, Guochuang Huang, Weixiang Chen, Zhen Wang, Jianbo Ye, Haiyang Li, Dongyun Chen, Jim Yang Lee, Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: Microstructure and electrochemical lithium storage, Journal of Power Sources, Volume 264, 15 October 2014
  • S.W. Hu, L.W. Yang, Y. Tian, X.L. Wei, J.W. Ding, J.X. Zhong, Paul K. Chu, Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: An effective binary heterojunction photocatalyst under visible light irradiation, Journal of Colloid and Interface Science, Volume 431, 1 October 2014
  • O.A. Lambri, F.G. Bonifacich, P.B. Bozzano, G.I. Zelada, F. Plazaola, J.A. García, Defects interaction processes in deformed high purity polycrystalline molybdenum at elevated temperatures, Journal of Nuclear Materials, Volume 453, Issues 1–3, October 2014
  • Zonghua Pu, Qian Liu, Abdullah M. Asiri, Abdullah Y. Obaid, Xuping Sun, Graphene film-confined molybdenum sulfide nanoparticles: Facile one-step electrodeposition preparation and application as a highly active hydrogen evolution reaction electrocatalyst, Journal of Power Sources, Volume 263, 1 October 2014
  • Anna Wojtaszek-Gurdak, Maciej Trejda, Dorota Kryszak, Maria Ziolek, Comparative study of MCM-22 and MCM-56 modified with molybdenum – Impact of the metal on acidic and oxidative properties of zeolites, Microporous and Mesoporous Materials, Volume 197, October 2014
  • Mahsa Jalal Mousavi, Mohammad Zakeri, Mohammadreza Rahimipour, Elham Amini, Mechanical properties of pressure-less sintered ZrB2 with molybdenum, iron and carbon additives, Materials Science and Engineering: A, Volume 613, 8 September 2014
  • Emmanuel D. Simandiras, Dimitrios G. Liakos, Nikolaos Psaroudakis, Konstantinos Mertis, Kubas complexes extended to four centers; a theoretical prediction of novel dihydrogen coordination in bimetallic tungsten and molybdenum compounds, Journal of Organometallic Chemistry, Volume 766, 1 September 2014
  • He Zhang, Kai Yu, Jing-Hua Lv, Chun-Mei Wang, Chun-Xiao Wang, Bai-Bin Zhou, Assembly of three organic–inorganic hybrid supramolecular materials based on reduced molybdenum(V) phosphates, Journal of Solid State Chemistry, Volume 217, September 2014
  • F.C. Carreri, R.M. Oliveira, A.C. Oliveira, M.M.N.F. Silva, M. Ueda, M.M. Silva, L. Pichon, Phase formation and mechanical/tribological modification induced by nitrogen high temperature plasma based ion implantation into molybdenum, Applied Surface Science, Volume 310, 15 August 2014
  • Mirjam Theelen, Krista Polman, Mathieu Tomassini, Nicolas Barreau, Henk Steijvers, Jurgen van Berkum, Zeger Vroon, Miro Zeman, Influence of deposition pressure and selenisation on damp heat degradation of the Cu(In,Ga)Se2 back contact molybdenum, Surface and Coatings Technology, Volume 252, 15 August 2014
  • Xiaojun Wang, Wei Wu, Xingde Xiang, Weishan Li, Pore-arrayed hydrogen molybdenum bronze: Preparation and performance as support of platinum nanoparticles for methanol oxidation, Journal of Power Sources, Volume 259, 1 August 2014
  • Priyanka Desai, D.D. Patel, A.R. Jani, Electrical transport properties of semiconducting chromium molybdenum diselenide single crystals, Materials Science in Semiconductor Processing, Volume 24, August 2014
  • Alexander D. DeAngelis, Aline Rougier, Jean-Pierre Manaud, Christine Labrugère, Eric L. Miller, Nicolas Gaillard, Temperature-resistant high-infrared transmittance indium molybdenum oxide thin films as an intermediate window layer for multi-junction photovoltaics, Solar Energy Materials and Solar Cells, Volume 127, August 2014
  • S.S.J. Aravind, Matthew Costa, Victor Pereira, Amos Mugweru, Kandalam Ramanujachary, Timothy D. Vaden, Molybdenum/graphene – Based catalyst for hydrogen evolution reaction synthesized by a rapid photothermal method, International Journal of Hydrogen Energy, Volume 39, Issue 22, 24 July 2014
  • Han-Chul Park, Kyung-Hoon Lee, Young-Woo Lee, Si-Jin Kim, Da-Mi Kim, Min-Cheol Kim, Kyung-Won Park, Mesoporous molybdenum nitride nanobelts as an anode with improved electrochemical properties in lithium ion batteries, Journal of Power Sources, Available online 11 July 2014
  • M. Miyamoto, H. Takaoka, K. Ono, S. Morito, N. Yoshida, H. Watanabe, A. Sagara, Crystal orientation dependence of surface modification in molybdenum mirror irradiated with helium ions, Journal of Nuclear Materials, Available online 8 July 2014
  • Tamara A. Bazhenova, Konstantin A. Lyssenko, Denis A. Kuznetsov, Nadezhda V. Kovaleva, Yuri V. Manakin, Tatyana A. Savinykh, Alexander F. Shestakov, Methanolysis of MoCl5 in the presence of different alkaline agents; molecular structures of the polynuclear molybdenum(V) methoxides and electron charge density distribution from X-ray diffraction study of the new K–Mo cluster, Polyhedron, Volume 76, 7 July 2014

Recent Research & Development for Sulfides

  • Jorge Omar Gil Posada, Peter J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, Journal of Power Sources, Volume 268, 5 December 2014
  • Jiaqin Yang, Wei Guo, Di Li, Caiying Wei, Hongmin Fan, Liyan Wu, Wenjun Zheng, Synthesis and electrochemical performances of novel hierarchical flower-like nickel sulfide with tunable number of composed nanoplates, Journal of Power Sources, Volume 268, 5 December 2014
  • Hee-Je Kim, Su-Weon Kim, Chandu V.V.M. Gopi, Soo-Kyoung Kim, S. Srinivasa Rao, Myeong-Soo Jeong, Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode, Journal of Power Sources, Volume 268, 5 December 2014
  • Jianhua Han, Zhifeng Liu, Boluo Yadian, Yizhong Huang, Keying Guo, Zhichao Liu, Bo Wang, Yajun Li, Ting Cui, Synthesis of metal sulfide sensitized zinc oxide-based core/shell/shell nanorods and their photoelectrochemical properties, Journal of Power Sources, Volume 268, 5 December 2014
  • Yaoming Xiao, Wei-Yan Wang, Shu-Wei Chou, Tsung-Wu Lin, Jeng-Yu Lin, In situ electropolymerization of polyaniline/cobalt sulfide decorated carbon nanotube composite catalyst toward triiodide reduction in dye-sensitized solar cells, Journal of Power Sources, Volume 266, 15 November 2014
  • J. Song, G.R. Li, C.Y. Wu, X.P. Gao, Metal sulfide counter electrodes for dye-sensitized solar cells: A balanced strategy for optical transparency and electrochemical activity, Journal of Power Sources, Volume 266, 15 November 2014
  • Ling Fei, Yufeng Jiang, Yun Xu, Gen Chen, Yuling Li, Xun Xu, Shuguang Deng, Hongmei Luo, A novel solvent-free thermal reaction of ferrocene and sulfur for one-step synthesis of iron sulfide and carbon nanocomposites and their electrochemical performance, Journal of Power Sources, Volume 265, 1 November 2014
  • Vieille Benoit, Lefebvre Cédric, Coppalle Alexis, Post fire behavior of carbon fibers Polyphenylene Sulfide- and epoxy-based laminates for aeronautical applications: A comparative study, Materials & Design, Volume 63, November 2014
  • S.I. Sadovnikov, A.I. Gusev, Effect of particle size on the thermal expansion of nanostructured lead sulfide films, Journal of Alloys and Compounds, Volume 610, 15 October 2014
  • O. Shpotyuk, S. Kozyukhin, Ya. Shpotyuk, P. Demchenko, V. Mitsa, M. Veres, Coordination disordering in near-stoichiometric arsenic sulfide glass, Journal of Non-Crystalline Solids, Volume 402, 15 October 2014