Molybdenum Trioxide Sputtering Target

High Purity MoO3 Sputtering Target
CAS 1313-27-5


Product Product Code Order or Specifications
(2N) 99% Molybdenum Trioxide Sputtering Target MO-OX-02-ST Contact American Elements
(3N) 99.9% Molybdenum Trioxide Sputtering Target MO-OX-03-ST Contact American Elements
(4N) 99.99% Molybdenum Trioxide Sputtering Target MO-OX-04-ST Contact American Elements
(5N) 99.999% Molybdenum Trioxide Sputtering Target MO-OX-05-ST Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
MoO3 1313-27-5 24852067 14802 MFCD00003469 215-204-7 trioxomolybdenum N/A O=[Mo](=O)=O InChI=1S/Mo.3O JKQOBWVOAYFWKG-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
MoO3 143.94 Powder 795 °C
(1463 °F)
1155 °C
(2111 °F)
6.47 g/cm3 145.89 145.89 0 Safety Data Sheet

Oxide IonAmerican Elements specializes in producing high purity Molybdenum Trioxide Sputtering Targets with the highest possible density High Purity (99.99%) Metallic Sputtering Targetand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard Sputtering Targets for thin film are available monoblock or bonded with dimensions and configurations up to 820 mm with hole drill locations and threading, beveling, grooves and backing designed to work with both older sputtering devices as well as the latest process equipment, such as large area coating for solar energy or fuel cells and flip-chip applications. Research sized targets are also produced as well as custom sizes and alloys. All targets are analyzed using best demonstrated techniques including X-Ray Fluorescence (XRF), Glow Discharge Mass Spectrometry (GDMS), and Inductively Coupled Plasma (ICP). "Sputtering" allows for thin film deposition of an ultra high purity sputtering metallic or oxide material onto another solid substrate by the controlled removal and conversion of the target material into a directed gaseous/plasma phase through ionic bombardment. We can also provide targets outside this range in addition to just about any size rectangular, annular, or oval target. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and in the form of solutions and organometallics. We also produce Molybdenum Trioxide as pellets, pieces, powder, and tablets. Oxide compounds are not conductive to electricity. However, certain perovskite structured oxides are electronically conductive finding application in the cathode of solid oxide fuel cells and oxygen generation systems. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. See safety data and research below and pricing/lead time above. Other shapes are available by request.

Molybdenum (Mo) atomic and molecular weight, atomic number and elemental symbolMolybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust.Elemental Molybdenum It has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead. For more information on molybdenum, including properties, safety data, research, and American Elements' catalog of molybdenum products, visit the Molybdenum Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H319-H335-H351
Hazard Codes Xn
Risk Codes 36/37-48/20/22
Safety Precautions 22-23
RTECS Number QA4725000
Transport Information UN 3288 6.1/PG 3
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity Health Hazard    

MOLYBDENUM TRIOXIDE SYNONYMS
Molybdena, Natural molybdite, Dioxomolybdenum, Molybdic oxide, Molybdenum(VI) oxide, Trioxomolybdenum, Molybdenum anhydride, Molybdic anhydride, Molybdic anhydride, Natural molybdite, Diketomolybdenum, Molybdic acid anhydride

CUSTOMERS FOR MOLYBDENUM TRIOXIDE SPUTTERING TARGETS HAVE ALSO LOOKED AT
Molybdenum Nanoparticles Molybdenum Rod Nickel Molybdenum Alloy
Titanium Molybdenum Alloy
Molybdenum Sputtering Target
Molybdenum Oxide Molybdenum Powder Molybdenum Acetate Molybdenum Wire Molybdenum Oxide Pellets
Molybdenum Pellets Molybdenum Sulfate Molybdenum Chloride Molybdenum Metal Molybdenum Foil
Show Me MORE Forms of Molybdenum

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Molybdenum

  • Xiao Jin, Weifu Sun, Zihan Chen, Yue Li, Pinjiang Li, Xingdao He, Yongbiao Yuan, Shibing Zou, Yuancheng Qin, Qinghua Li, Efficient electron/hole transport in inorganic/organic hybrid solar cells by lithium ion and molybdenum trioxide codoping, Journal of Power Sources, Volume 268, 5 December 2014
  • S. Imran U. Shah, Andrew L. Hector, John R. Owen, Redox supercapacitor performance of nanocrystalline molybdenum nitrides obtained by ammonolysis of chloride- and amide-derived precursors, Journal of Power Sources, Volume 266, 15 November 2014
  • Omid Torabi, Mohammad Hossein Golabgir, Hamid Tajizadegan, Hamid Torabi, A study on mechanochemical behavior of MoO3–Mg–C to synthesize molybdenum carbide, International Journal of Refractory Metals and Hard Materials, Volume 47, November 2014
  • Lin Ma, Guochuang Huang, Weixiang Chen, Zhen Wang, Jianbo Ye, Haiyang Li, Dongyun Chen, Jim Yang Lee, Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: Microstructure and electrochemical lithium storage, Journal of Power Sources, Volume 264, 15 October 2014
  • S.W. Hu, L.W. Yang, Y. Tian, X.L. Wei, J.W. Ding, J.X. Zhong, Paul K. Chu, Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: An effective binary heterojunction photocatalyst under visible light irradiation, Journal of Colloid and Interface Science, Volume 431, 1 October 2014
  • O.A. Lambri, F.G. Bonifacich, P.B. Bozzano, G.I. Zelada, F. Plazaola, J.A. García, Defects interaction processes in deformed high purity polycrystalline molybdenum at elevated temperatures, Journal of Nuclear Materials, Volume 453, Issues 1–3, October 2014
  • Zonghua Pu, Qian Liu, Abdullah M. Asiri, Abdullah Y. Obaid, Xuping Sun, Graphene film-confined molybdenum sulfide nanoparticles: Facile one-step electrodeposition preparation and application as a highly active hydrogen evolution reaction electrocatalyst, Journal of Power Sources, Volume 263, 1 October 2014
  • Anna Wojtaszek-Gurdak, Maciej Trejda, Dorota Kryszak, Maria Ziolek, Comparative study of MCM-22 and MCM-56 modified with molybdenum – Impact of the metal on acidic and oxidative properties of zeolites, Microporous and Mesoporous Materials, Volume 197, October 2014
  • Mahsa Jalal Mousavi, Mohammad Zakeri, Mohammadreza Rahimipour, Elham Amini, Mechanical properties of pressure-less sintered ZrB2 with molybdenum, iron and carbon additives, Materials Science and Engineering: A, Volume 613, 8 September 2014
  • Emmanuel D. Simandiras, Dimitrios G. Liakos, Nikolaos Psaroudakis, Konstantinos Mertis, Kubas complexes extended to four centers; a theoretical prediction of novel dihydrogen coordination in bimetallic tungsten and molybdenum compounds, Journal of Organometallic Chemistry, Volume 766, 1 September 2014
  • He Zhang, Kai Yu, Jing-Hua Lv, Chun-Mei Wang, Chun-Xiao Wang, Bai-Bin Zhou, Assembly of three organic–inorganic hybrid supramolecular materials based on reduced molybdenum(V) phosphates, Journal of Solid State Chemistry, Volume 217, September 2014
  • F.C. Carreri, R.M. Oliveira, A.C. Oliveira, M.M.N.F. Silva, M. Ueda, M.M. Silva, L. Pichon, Phase formation and mechanical/tribological modification induced by nitrogen high temperature plasma based ion implantation into molybdenum, Applied Surface Science, Volume 310, 15 August 2014
  • Mirjam Theelen, Krista Polman, Mathieu Tomassini, Nicolas Barreau, Henk Steijvers, Jurgen van Berkum, Zeger Vroon, Miro Zeman, Influence of deposition pressure and selenisation on damp heat degradation of the Cu(In,Ga)Se2 back contact molybdenum, Surface and Coatings Technology, Volume 252, 15 August 2014
  • Xiaojun Wang, Wei Wu, Xingde Xiang, Weishan Li, Pore-arrayed hydrogen molybdenum bronze: Preparation and performance as support of platinum nanoparticles for methanol oxidation, Journal of Power Sources, Volume 259, 1 August 2014
  • Priyanka Desai, D.D. Patel, A.R. Jani, Electrical transport properties of semiconducting chromium molybdenum diselenide single crystals, Materials Science in Semiconductor Processing, Volume 24, August 2014
  • Alexander D. DeAngelis, Aline Rougier, Jean-Pierre Manaud, Christine Labrugère, Eric L. Miller, Nicolas Gaillard, Temperature-resistant high-infrared transmittance indium molybdenum oxide thin films as an intermediate window layer for multi-junction photovoltaics, Solar Energy Materials and Solar Cells, Volume 127, August 2014
  • S.S.J. Aravind, Matthew Costa, Victor Pereira, Amos Mugweru, Kandalam Ramanujachary, Timothy D. Vaden, Molybdenum/graphene – Based catalyst for hydrogen evolution reaction synthesized by a rapid photothermal method, International Journal of Hydrogen Energy, Volume 39, Issue 22, 24 July 2014
  • Han-Chul Park, Kyung-Hoon Lee, Young-Woo Lee, Si-Jin Kim, Da-Mi Kim, Min-Cheol Kim, Kyung-Won Park, Mesoporous molybdenum nitride nanobelts as an anode with improved electrochemical properties in lithium ion batteries, Journal of Power Sources, Available online 11 July 2014
  • M. Miyamoto, H. Takaoka, K. Ono, S. Morito, N. Yoshida, H. Watanabe, A. Sagara, Crystal orientation dependence of surface modification in molybdenum mirror irradiated with helium ions, Journal of Nuclear Materials, Available online 8 July 2014
  • Tamara A. Bazhenova, Konstantin A. Lyssenko, Denis A. Kuznetsov, Nadezhda V. Kovaleva, Yuri V. Manakin, Tatyana A. Savinykh, Alexander F. Shestakov, Methanolysis of MoCl5 in the presence of different alkaline agents; molecular structures of the polynuclear molybdenum(V) methoxides and electron charge density distribution from X-ray diffraction study of the new K–Mo cluster, Polyhedron, Volume 76, 7 July 2014