Sodium Nitrate Solution

AE Solutions™
NaNO 3
CAS 7631-99-4

Product Product Code Order or Specifications
(2N) 99% Sodium Nitrate Solution NA-NAT-02-SOL Contact American Elements
(3N) 99.9% Sodium Nitrate Solution NA-NAT-03-SOL Contact American Elements
(4N) 99.99% Sodium Nitrate Solution NA-NAT-04-SOL Contact American Elements
(5N) 99.999% Sodium Nitrate Solution NA-NAT-05-SOL Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
NaNO3 7631-99-4 24899657 24268 MFCD00011119 231-554-3 Sodium nitrate N/A [Na+].[O-][N+]([O-])=O InChI=1S/NO3.Na

PROPERTIES Compound Formula Mol. Wt. Appearance Density

Exact Mass

Monoisotopic Mass Charge MSDS
NNaO3 84.99 White to clear liquid 2.26 g/cm3 84.9776 g/mol 84.977585 Da 0 Safety Data Sheet

Nitrate IonSodium Nitrate Solutions are moderate to highly concentrated liquid solutions of Sodium Nitrate. They are an excellent source of Sodium Nitrate for applications requiring solubilized Compound Solutions Packaging, Bulk Quantity materials. American Elements can prepare dissolved homogenous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers .American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research and in optic, laser, crystal and glass applications. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale (See also Nanotechnology Information and Quantum Dots) elemental powders and suspensions, as alternative high surface area forms, may be considered. We also produce Sodium Nitrate Powder. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Sodium Bohr ModelSodium (Na) atomic and molecular weight, atomic number and elemental symbolSodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with na atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1.The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word "suda," meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from "natrium," its Latin name. For more information on sodium, including properties, safety data, research, and American Elements' catalog of sodium products, visit the Sodium Information Center.

UN 1498 5.1/PG 3
Exclamation Mark-Acute Toxicity Flame Over Circle-Oxidizing gases and liquids      

Chile salpeter, Niter, Soda niter, Etabisulfite, Cubic niter, Chile saltpeter, Nitratine

Sodium Fluoride Sodium Chloride Sodium Oxide Sputtering Target Sodium Sulfate Sodium Oxide Powder
Sodium Nitrate Sodium Acetate Sodium 2 - Ethylhexanoate Sodium Tungstate Sodium Oxide
Sodium Oxide Nanopowder Sodium Oxide Pellets Sodium Cubes Gold(I) Sodium Cyanide Sodium Benzoate
Show Me MORE Forms of Sodium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Sodium

  • Enshan Han, Qiming Jing, Lingzhi Zhu, Guowei Zhang, Shuqian Ma, The effects of sodium additive on Li1.17Ni0.10Co0.10Mn0.63O2 for lithium ion batteries, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • Yuchao Li, Jianguo Tang, Linjun Huang, Yao Wang, Jixian Liu, Xiangcai Ge, Sie Chin Tjong, Robert Kwok Yiu Li, Laurence A. Belfiore, Facile preparation, characterization and performance of noncovalently functionalized graphene/epoxy nanocomposites with poly(sodium 4-styrenesulfonate), Composites Part A: Applied Science and Manufacturing, Volume 68, January 2015
  • M. Afshari, M. Moradi, M. Rostami, Structural, electronic and magnetic properties of the (001), (110) and (111) surfaces of rocksalt sodium sulfide: A first-principles study, Journal of Physics and Chemistry of Solids, Volume 76, January 2015
  • Lucille Bodenes, Ali Darwiche, Laure Monconduit, Hervé Martinez, The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray Photoelectron Spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries, Journal of Power Sources, Volume 273, 1 January 2015
  • Gurpreet Singh, Frederic Aguesse, Laida Otaegui, Eider Goikolea, Elena Gonzalo, Julie Segalini, Teofilo Rojo, Electrochemical performance of NaFex(Ni0.5Ti0.5)1−xO2 (x = 0.2 and x = 0.4) cathode for sodium-ion battery, Journal of Power Sources, Volume 273, 1 January 2015
  • E.J.C. Davim, M.H.V. Fernandes, A.M.R. Senos, Increased surface area during sintering of calcium phosphate glass and sodium chloride mixtures, Journal of the European Ceramic Society, Volume 35, Issue 1, January 2015
  • Saeideh Hematian, Faramarz Hormozi, Drying kinetics of coated sodium percarbonate particles in a conical fluidized bed dryer, Powder Technology, Volume 269, January 2015
  • J. Suresh Kumar, K. Pavani, M.P.F. Graça, M.J. Soares, Enhanced green upconversion by controlled ceramization of Er3+–Yb3+ co-doped sodium niobium tellurite glass–ceramics for low temperature sensors, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Xuebin Qiao, Yu Cheng, Lin Qin, Chuanxiang Qin, Peiqing Cai, Sun Il Kim, Hyo Jin Seo, Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Kaiqiang Wu, Jie Shu, Xiaoting Lin, Lianyi Shao, Mengmeng Lao, Miao Shui, Peng Li, Nengbing Long, Dongjie Wang, Enhanced electrochemical performance of sodium lithium titanate by coating various carbons, Journal of Power Sources, Volume 272, 25 December 2014

Recent Research & Development for Nitrates

  • Teresa S. Ortner, Klaus Wurst, Lukas Perfler, Martina Tribus, Hubert Huppertz, Hydrothermal synthesis and characterization of the first mixed alkali borate-nitrate K3Na[B6O9(OH)3]NO3, Journal of Solid State Chemistry, Volume 221, January 2015
  • A.G. Fernández, S. Ushak, H. Galleguillos, F.J. Pérez, Thermal characterisation of an innovative quaternary molten nitrate mixture for energy storage in CSP plants, Solar Energy Materials and Solar Cells, Volume 132, January 2015
  • Ying Wang, Jia Yang, Wenliang Gao, Rihong Cong, Tao Yang, Organic-free hydrothermal synthesis of chalcopyrite CuInS2 and its photocatalytic activity for nitrate ions reduction, Materials Letters, Volume 137, 15 December 2014
  • L. Liu, J.P. Cheng, J. Zhang, F. Liu, X.B. Zhang, Effects of dodecyl sulfate and nitrate anions on the supercapacitive properties of α-Co(OH)2, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Baogang Zhang, Ye Liu, Shuang Tong, Maosheng Zheng, Yinxin Zhao, Caixing Tian, Hengyuan Liu, Chuanping Feng, Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells, Journal of Power Sources, Volume 268, 5 December 2014
  • Jinghuan Luo, Guangyu Song, Jianyong Liu, Guangren Qian, Zhi Ping Xu, Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface, Journal of Colloid and Interface Science, Volume 435, 1 December 2014
  • Dajana Japić, Marko Bitenc, Marjan Marinšek, Zorica Crnjak Orel, The impact of nano-milling on porous ZnO prepared from layered zinc hydroxide nitrate and zinc hydroxide carbonate, Materials Research Bulletin, Volume 60, December 2014
  • Xu Wang, Dahai Pan, Qian Xu, Min He, Shuwei Chen, Feng Yu, Ruifeng Li, Synthesis of ordered mesoporous alumina with high thermal stability using aluminum nitrate as precursor, Materials Letters, Volume 135, 15 November 2014
  • Javad Baneshi, Mohammad Haghighi, Naeimeh Jodeiri, Mozaffar Abdollahifar, Hossein Ajamein, Urea–nitrate combustion synthesis of ZrO2 and CeO2 doped CuO/Al2O3 nanocatalyst used in steam reforming of biomethanol for hydrogen production, Ceramics International, Volume 40, Issue 9, Part A, November 2014
  • Ian Y.Y. Bu, Sol–gel production of aluminium doped zinc oxide using aluminium nitrate, Materials Science in Semiconductor Processing, Volume 27, November 2014