Sodium Nitrate Solution

AE Solutions™
NaNO 3
CAS 7631-99-4


Product Product Code Order or Specifications
(2N) 99% Sodium Nitrate Solution NA-NAT-02-SOL Contact American Elements
(3N) 99.9% Sodium Nitrate Solution NA-NAT-03-SOL Contact American Elements
(4N) 99.99% Sodium Nitrate Solution NA-NAT-04-SOL Contact American Elements
(5N) 99.999% Sodium Nitrate Solution NA-NAT-05-SOL Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
NaNO3 7631-99-4 24899657 24268 MFCD00011119 231-554-3 Sodium nitrate N/A [Na+].[O-][N+]([O-])=O InChI=1S/NO3.Na
/c2-1(3)4;/q-1;+1
VWDWKYIASSYTQR-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density

Exact Mass

Monoisotopic Mass Charge MSDS
NNaO3 84.99 White to clear liquid 2.26 g/cm3 84.9776 g/mol 84.977585 Da 0 Safety Data Sheet

Nitrate IonSodium Nitrate Solutions are moderate to highly concentrated liquid solutions of Sodium Nitrate. They are an excellent source of Sodium Nitrate for applications requiring solubilized Compound Solutions Packaging, Bulk Quantity materials. American Elements can prepare dissolved homogenous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers .American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research and in optic, laser, crystal and glass applications. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale (See also Nanotechnology Information and Quantum Dots) elemental powders and suspensions, as alternative high surface area forms, may be considered. We also produce Sodium Nitrate Powder. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Sodium Bohr ModelSodium (Na) atomic and molecular weight, atomic number and elemental symbolSodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with na atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1.The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word "suda," meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from "natrium," its Latin name. For more information on sodium, including properties, safety data, research, and American Elements' catalog of sodium products, visit the Sodium Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Warning
H272-H302-H315-H319-H335
O,Xn
8-22-36/37/38
17-26-27-36/37/39
WC5600000
UN 1498 5.1/PG 3
3
Exclamation Mark-Acute Toxicity Flame Over Circle-Oxidizing gases and liquids      

SODIUM NITRATE SYNONYMS
Chile salpeter, Niter, Soda niter, Etabisulfite, Cubic niter, Chile saltpeter, Nitratine

CUSTOMERS FOR SODIUM NITRATE SOLUTION HAVE ALSO LOOKED AT
Sodium Fluoride Sodium Chloride Sodium Oxide Sputtering Target Sodium Sulfate Sodium Oxide Powder
Sodium Nitrate Sodium Acetate Sodium 2 - Ethylhexanoate Sodium Tungstate Sodium Oxide
Sodium Oxide Nanopowder Sodium Oxide Pellets Sodium Cubes Gold(I) Sodium Cyanide Sodium Benzoate
Show Me MORE Forms of Sodium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Sodium

  • L.Z. Ouyang, H. Zhong, Z.M. Li, Z.J. Cao, H. Wang, J.W. Liu, X.K. Zhu, M. Zhu, Low-cost method for sodium borohydride regeneration and the energy efficiency of its hydrolysis and regeneration process, Journal of Power Sources, Volume 269, 10 December 2014
  • Zichao Yan, Li Liu, Jinli Tan, Qian Zhou, Zhifeng Huang, Dongdong Xia, Hongbo Shu, Xiukang Yang, Xianyou Wang, One-pot synthesis of bicrystalline titanium dioxide spheres with a core–shell structure as anode materials for lithium and sodium ion batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • Changsheng Ding, Toshiyuki Nohira, Rika Hagiwara, Kazuhiko Matsumoto, Yu Okamoto, Atsushi Fukunaga, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, Na[FSA]-[C3C1pyrr][FSA] ionic liquids as electrolytes for sodium secondary batteries: Effects of Na ion concentration and operation temperature, Journal of Power Sources, Volume 269, 10 December 2014
  • Il Tae Kim, Sang-Ok Kim, Arumugam Manthiram, Effect of TiC addition on SnSb–C composite anodes for sodium-ion batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • Keeyoung Jung, Solki Lee, Goun Kim, Chang-Soo Kim, Stress analyses for the glass joints of contemporary sodium sulfur batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • F.E. López-Suárez, A. Bueno-López, K.I.B. Eguiluz, G.R. Salazar-Banda, Pt–Sn/C catalysts prepared by sodium borohydride reduction for alcohol oxidation in fuel cells: Effect of the precursor addition order, Journal of Power Sources, Volume 268, 5 December 2014
  • Zhijie Wu, Xikang Mao, Qin Zi, Rongrong Zhang, Tao Dou, Alex C.K. Yip, Mechanism and kinetics of sodium borohydride hydrolysis over crystalline nickel and nickel boride and amorphous nickel–boron nanoparticles, Journal of Power Sources, Volume 268, 5 December 2014
  • M.A. Deyab, Hydrogen generation by tin corrosion in lactic acid solution promoted by sodium perchlorate, Journal of Power Sources, Volume 268, 5 December 2014
  • Majid Mortazavi, Chao Wang, Junkai Deng, Vivek B. Shenoy, Nikhil V. Medhekar, Ab initio characterization of layered MoS2 as anode for sodium-ion batteries, Journal of Power Sources, Volume 268, 5 December 2014
  • Gaoxiao Zhang, Zhaoyin Wen, Xiangwei Wu, Jingchao Zhang, Guoqiang Ma, Jun Jin, Sol–gel synthesis of Mg2+ stabilized Na-ß?/ß-Al2O3 solid electrolyte for sodium anode battery, Journal of Alloys and Compounds, Volume 613, 15 November 2014
  • Tsuyoshi Honma, Atsushi Sato, Noriko Ito, Takuya Togashi, Kenji Shinozaki, Takayuki Komatsu, Crystallization behavior of sodium iron phosphate glass Na2 - xFe1 + 0.5xP2O7 for sodium ion batteries, Journal of Non-Crystalline Solids, Volume 404, 15 November 2014
  • Siham Doubaji, Mario Valvo, Ismael Saadoune, Mohammed Dahbi, Kristina Edström, Synthesis and characterization of a new layered cathode material for sodium ion batteries, Journal of Power Sources, Volume 266, 15 November 2014
  • Robin Jose, Tilesh Jayantilal Patel, Troy Allen Cather, Daniel Joseph Willhelm, Janusz Grebowicz, Haesook Han, Pradip Kumar Bhowmik, Lewis Sharpnack, Dena Mae Agra-Kooijman, Satyendra Kumar, Thermotropic mesomorphism in catanionic surfactants synthesized from quaternary ammonium surfactants and sodium dodecylbenzenesulfonate: Effect of chain length and symmetry, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 461, 5 November 2014
  • Monali Maiti, Aparna Roy, Sumita Roy, Effect of pH and amphiphile concentration on the gel-emulsion of sodium salt of 2-dodecylpyridine-5-boronic acid: Entrapment and release of vitamin B12, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 461, 5 November 2014
  • Tingting Zhang, Luc J. Vandeperre, Christopher R. Cheeseman, Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate, Cement and Concrete Research, Volume 65, November 2014
  • Rackel San Nicolas, Susan A. Bernal, Ruby Mejía de Gutiérrez, Jannie S.J. van Deventer, John L. Provis, Distinctive microstructural features of aged sodium silicate-activated slag concretes, Cement and Concrete Research, Volume 65, November 2014
  • Haoyang Wu, Mingli Qin, Aimin Chu, Qi Wan, Zhiqin Cao, Ye Liu, Xuanhui Qu, Alex A. Volinsky, AlN powder synthesis by sodium fluoride-assisted carbothermal combustion, Ceramics International, Volume 40, Issue 9, Part A, November 2014
  • Keteng Cao, Zhongyi Jiang, Jing Zhao, Cuihong Zhao, Chengyun Gao, Fusheng Pan, Baoyi Wang, Xingzhong Cao, Jing Yang, Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides, Journal of Membrane Science, Volume 469, 1 November 2014
  • Kazuhiko Matsumoto, Takafumi Hosokawa, Toshiyuki Nohira, Rika Hagiwara, Atsushi Fukunaga, Koma Numata, Eiko Itani, Shoichiro Sakai, Koji Nitta, Shinji Inazawa, The Na[FSA]–[C2C1im][FSA] (C2C1im+:1-ethyl-3-methylimidazolium and FSA-:bis(fluorosulfonyl)amide) ionic liquid electrolytes for sodium secondary batteries, Journal of Power Sources, Volume 265, 1 November 2014
  • Guangqiang Li, Danlu Jiang, Hui Wang, Xinzheng Lan, Honghai Zhong, Yang Jiang, Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries, Journal of Power Sources, Volume 265, 1 November 2014

Recent Research & Development for Nitrates

  • L. Liu, J.P. Cheng, J. Zhang, F. Liu, X.B. Zhang, Effects of dodecyl sulfate and nitrate anions on the supercapacitive properties of a-Co(OH)2, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Baogang Zhang, Ye Liu, Shuang Tong, Maosheng Zheng, Yinxin Zhao, Caixing Tian, Hengyuan Liu, Chuanping Feng, Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells, Journal of Power Sources, Volume 268, 5 December 2014
  • Xu Wang, Dahai Pan, Qian Xu, Min He, Shuwei Chen, Feng Yu, Ruifeng Li, Synthesis of ordered mesoporous alumina with high thermal stability using aluminum nitrate as precursor, Materials Letters, Volume 135, 15 November 2014
  • Javad Baneshi, Mohammad Haghighi, Naeimeh Jodeiri, Mozaffar Abdollahifar, Hossein Ajamein, Urea–nitrate combustion synthesis of ZrO2 and CeO2 doped CuO/Al2O3 nanocatalyst used in steam reforming of biomethanol for hydrogen production, Ceramics International, Volume 40, Issue 9, Part A, November 2014
  • Ian Y.Y. Bu, Sol–gel production of aluminium doped zinc oxide using aluminium nitrate, Materials Science in Semiconductor Processing, Volume 27, November 2014
  • N. Sivakumar, V. Jaisankar, G. Chakkaravarthi, G. Anbalagan, Synthesis, crystal structure, optical, thermal and mechanical characterization of poly bis(thiourea) silver(I) nitrate single crystals synthesized at room temperature, Materials Letters, Volume 132, 1 October 2014
  • Jing Cai, Ping Zheng, Mahmood Qaisar, Peide Sun, Effect of electrode types on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell, Separation and Purification Technology, Volume 134, 25 September 2014
  • Raka Mukherjee, Sirshendu De, Adsorptive removal of nitrate from aqueous solution by polyacrylonitrile–alumina nanoparticle mixed matrix hollow-fiber membrane, Journal of Membrane Science, Volume 466, 15 September 2014
  • Mircea Niculescu, Ionut Ledeti, Mihail Bîrzescu, New methods to obtain carboxylic acids by oxidation reactions of 1,2-ethanediol with metallic nitrates, Journal of Organometallic Chemistry, Volume 767, 15 September 2014
  • Bikshandarkoil R. Srinivasan, Comments on the paper: ‘Studies on structural, thermal and optical properties of novel NLO crystal bis l-glutamine sodium nitrate’, Materials Letters, Volume 131, 15 September 2014
  • Redrothu Hanumantharao, S. Kalainathan, Reply to “Comments on the paper: Studies on structural, thermal and optical properties of novel NLO crystal bis l-glutamine sodium nitrate”, Materials Letters, Volume 131, 15 September 2014
  • N. Hosseini, F. Karimzadeh, M.H. Abbasi, G.M. Choi, Microstructural characterization and electrical conductivity of CuxMn3-xO4 (0.9=x=1.3) spinels produced by optimized glycine–nitrate combustion and mechanical milling processes, Ceramics International, Volume 40, Issue 8, Part A, September 2014
  • J.L. Camas-Anzueto, A.E. Aguilar-Castillejos, J.H. Castañón-González, M.C. Lujpán-Hidalgo, H.R. Hernández de León, R. Mota Grajales, Fiber sensor based on Lophine sensitive layer for nitrate detection in drinking water, Optics and Lasers in Engineering, Volume 60, September 2014
  • Wattana Tuichai, Prasit Thongbai, Vittaya Amornkitbamrung, Teerapon Yamwong, Santi Maensiri, Na0.5Bi0.5Cu3Ti4O12 nanocrystalline powders prepared by a glycine–nitrate process: Preparation, characterization, and their dielectric properties, Microelectronic Engineering, Volume 126, 25 August 2014
  • Reza Shokrani, Mohammad Haghighi, Naeimeh Jodeiri, Hossein Ajamein, Mozaffar Abdollahifar, Fuel cell grade hydrogen production via methanol steam reforming over CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios synthesized via urea-nitrates combustion method, International Journal of Hydrogen Energy, Volume 39, Issue 25, 22 August 2014
  • Lina Shi, Jianhua Du, Zuliang Chen, Mallavarapu Megharaj, Ravendra Naidu, Functional kaolinite supported Fe/Ni nanoparticles for simultaneous catalytic remediation of mixed contaminants (lead and nitrate) from wastewater, Journal of Colloid and Interface Science, Volume 428, 15 August 2014
  • Xinxin Jiang, Kaiqiang Wu, Lianyi Shao, Miao Shui, Xiaoting Lin, Mengmeng Lao, Nengbing Long, Yuanlong Ren, Jie Shu, Lithium storage mechanism in superior high capacity copper nitrate hydrate anode material, Journal of Power Sources, Volume 260, 15 August 2014
  • Inmaculada Pérez-Toro, Alicia Domínguez-Martín, Duane Choquesillo-Lazarte, Esther Vílchez-Rodríguez, Alfonso Castiñeiras, Juan Niclós-Gutiérrez, Synthesis, thermogravimetric study and crystal structure of an N-rich copper(II) compound with tren ligands and nitrate counter-anions, Thermochimica Acta, Available online 12 August 2014
  • Seung-Young Park, Chan Woong Na, Jee Hyun Ahn, Rak-Hyun Song, Jong-Heun Lee, Preparation of highly porous NiO–gadolinium-doped ceria nano-composite powders by one-pot glycine nitrate process for anode-supported tubular solid oxide fuel cells, Journal of Asian Ceramic Societies, Available online 4 August 2014
  • Laxman Singh, Uma Shanker Rai, Kamdeo Mandal, Byung Cheol Sin, Sang-Ick Lee, Youngil Lee, Dielectric, AC-impedance, modulus studies on 0.5BaTiO3·0.5CaCu3Ti4O12 nano-composite ceramic synthesized by one-pot, glycine-assisted nitrate-gel route, Ceramics International, Volume 40, Issue 7, Part A, August 2014