Skip to Page Content

Sodium Nitrate Solution

AE Solutions™
NaNO 3
CAS 7631-99-4

Product Product Code Request Quote
(2N) 99% Sodium Nitrate Solution NA-NAT-02-SOL Request Quote
(3N) 99.9% Sodium Nitrate Solution NA-NAT-03-SOL Request Quote
(4N) 99.99% Sodium Nitrate Solution NA-NAT-04-SOL Request Quote
(5N) 99.999% Sodium Nitrate Solution NA-NAT-05-SOL Request Quote

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
NaNO3 7631-99-4 24899657 24268 MFCD00011119 231-554-3 Sodium nitrate N/A [Na+].[O-][N+]([O-])=O InChI=1S/NO3.Na

PROPERTIES Compound Formula Mol. Wt. Appearance Density Exact Mass Monoisotopic Mass Charge MSDS
NNaO3 84.99 White to clear liquid 2.26 g/cm3 84.9776 g/mol 84.977585 Da 0 Safety Data Sheet

Nitrate IonSodium Nitrate Solutions are moderate to highly concentrated liquid solutions of Sodium Nitrate. They are an excellent source of Sodium Nitrate for applications requiring solubilized Compound Solutions Packaging, Bulk Quantity materials. American Elements can prepare dissolved homogenous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers .American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research and in optic, laser, crystal and glass applications. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale elemental powders and suspensions, as alternative high surface area forms, may be considered. We also produce Sodium Nitrate Powder. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Sodium Bohr ModelSodium (Na) atomic and molecular weight, atomic number and elemental symbolSodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with na atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1.The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word suda, meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from natrium, its Latin name. For more information on sodium, including properties, safety data, research, and American Elements' catalog of sodium products, visit the Sodium element page.

UN 1498 5.1/PG 3
Exclamation Mark-Acute Toxicity Flame Over Circle-Oxidizing gases and liquids      

Chile salpeter, Niter, Soda niter, Etabisulfite, Cubic niter, Chile saltpeter, Nitratine

Sodium Fluoride Thallium-doped Sodium Iodide Barium Sodium Niobium Oxide Sodium Sulfate Europium Sodium Sulfate
Sodium Nitrate Sodium Acetate Sodium 2-Ethylhexanoate Sodium Tungstate Sodium Oxide
Sodium Oxide Nanopowder Sodium Oxide Pellets Sodium Cubes Gold(I) Sodium Cyanide Sodium Benzoate
Show Me MORE Forms of Sodium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Sodium

  • Sodium Triflate Decreases Inter-Aggregate Repulsion and Induces Phase Separation in Cationic Micelles. Filipe da Silva Lima, Iolanda Midea Cuccovia, Richard Buchner, Filipe Eufrásio Antunes, Bjorn Lindman, Maria Graça Miguel, Dominik Horinek, and Hernan Chaimovich. Langmuir: February 17, 2015
  • Rough Glass Surface-Mediated Transition of Micelle-to-Vesicle in Sodium Dodecylbenzenesulfonate Solutions. Ruiying Song, Na Du, Xiaoyu Zhu, Haiping Li, Shue Song, and Wan Guo Hou. J. Phys. Chem. B: February 16, 2015
  • Removal of Interstitial H2O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery. Jie Song, Long Wang, Yuhao Lu, Jue Liu, Bingkun Guo, Penghao Xiao, Jong-Jan Lee, Xiao-Qing Yang, Graeme Henkelman, and John B. Goodenough. J. Am. Chem. Soc.: February 13, 2015
  • Extended-Conjugated System for Fast-Charge and -Discharge Sodium-Ion Batteries. Chengliang Wang, Yang Xu, Yaoguo Fang, Min Zhou, Liying Liang, Sukhdeep Singh, Huaping Zhao, Andreas Schober, and Yong Lei. J. Am. Chem. Soc.: February 9, 2015
  • Electrophoretic Extraction of Low Molecular Weight Cationic Analytes from Sodium Dodecyl Sulfate Containing Sample Matrices for their Direct Electrospray Ionization Mass Spectrometry. Tristan F Kinde, Debashis Dutta, and Thomas D Lopez. Anal. Chem.: February 9, 2015
  • Measurement and Correlation for the Solid Solubility of Antioxidants Sodium l-Ascorbate and Sodium Erythorbate Monohydrate in Supercritical Carbon Dioxide. Tzu-Chi Wang and Po-Chao Chang. J. Chem. Eng. Data: February 9, 2015
  • Kinetic study on sodium sulfate synthesis by reactive crystallization. Juan Carlos Ojeda Toro, Izabela Dobrosz-Gomez, and Miguel Ángel Gómez-García. Ind. Eng. Chem. Res.: February 9, 2015
  • Synergistic Deleterious Effect of Chronic Stress and Sodium Azide in the Mouse Hippocampus. María José Delgado-Cortés, Ana M. Espinosa-Oliva, Manuel Sarmiento, Sandro Argüelles, Antonio J. Herrera, Raquel Mauriño, Ruth F. Villarán, José L. Venero, Alberto Machado, and Rocío M. de Pablos. Chem. Res. Toxicol.: February 6, 2015
  • Spontaneous Vesicle Based Excipient Formation in Mixtures of Sodium N-(n-Alkanoyl)-L-alaninate and N-Cetylpyridinium Chloride: Effect of Hydrocarbon Chain Length. Sampad Ghosh and Anirban Ray. Ind. Eng. Chem. Res.: February 6, 2015
  • Engineering Potent and Selective Analogs of GpTx-1, a Tarantula Venom Peptide Antagonist of the NaV1.7 Sodium Channel. Justin Keith Murray, Joseph Ligutti, Dong Liu, Anruo Zou, Leszek Poppe, Hongyan Li, Kristin L. Andrews, Bryan D Moyer, Stefan I McDonough, Philippe Favreau, Reto Stöcklin, and Les P Miranda. J. Med. Chem.: February 6, 2015

Recent Research & Development for Nitrates

  • Surface-Enhanced Nitrate Photolysis on Ice. Guillaume Marcotte, Patrick Marchand, Stéphanie Pronovost, Patrick Ayotte, Carine Laffon, and Philippe Parent. J. Phys. Chem. A: February 11, 2015
  • Enhancement of Nitrite and Nitrate Electrocatalytic Reduction through the Employment of Self-Assembled Layers of Nickel- and Copper-Substituted Crown-Type Heteropolyanions. Shahzad Imar, Chiara Maccato, Calum Dickinson, Fathima Laffir, Mikhail Vagin, and Timothy McCormac. Langmuir: February 2, 2015
  • Facultative Nitrate Reduction by Electrode-Respiring Geobacter Metallireducens Biofilms as a Competitive Reaction to Electrode Reduction in a Bioelectrochemical System. Hiroyuki Kashima and John M. Regan. Environ. Sci. Technol.: January 27, 2015
  • Reactions of Rare Earth Hydrated Nitrates and oxides with Formamide: Relevant to Recycling Rare Earth Metals. Pradeep Samarasekere, Xiqu Wang, Watchareeya Kaveevivitchai, and Allan J. Jacobson. Crystal Growth & Design: January 20, 2015
  • Thermodynamic Modeling of Apparent Molal Volumes of Metal Nitrate Salts with Pitzer Model. Mouad Arrad, Mohammed Kaddami, Hannu Sippola, and Pekka Taskinen. J. Chem. Eng. Data: January 16, 2015
  • Fast Diffusion Reaction in the Composition and Morphology of Coprecipitated Carbonates and Nitrates of Copper(II), Magnesium(II), and Zinc(II). J. Michael Davidson, Khellil Sefiane, and Tiffany Wood. Ind. Eng. Chem. Res.: January 14, 2015
  • Novel Approach for the Preparation of Hydroxylammonium Nitrate from the Acid-Catalyzed Hydrolysis of Cyclohexanone Oxime. Fangfang Zhao, Kuiyi You, Ruige Li, Shan Tan, Pingle Liu, Jian Wu, Qiuhong Ai, and He’an Luo. Ind. Eng. Chem. Res.: January 6, 2015
  • Comparative Lipidomic Profiling of Two Dunaliella tertiolecta Strains with Different Growth Temperatures under Nitrate-Deficient Conditions. So-Hyun Kim, Hye Min Ahn, Sa Rang Lim, Seong-Joo Hong, Byung-Kwan Cho, Hookeun Lee, Choul-Gyun Lee, and Hyung-Kyoon Choi. J. Agric. Food Chem.: December 30, 2014
  • Independence of Nitrate and Nitrite Inhibition of Desulfovibrio vulgaris Hildenborough and Use of Nitrite as a Substrate for Growth. Hannah L. Korte, Avneesh Saini, Valentine V. Trotter, Gareth P. Butland, Adam P. Arkin, and Judy D. Wall. Environ. Sci. Technol.: December 22, 2014
  • Nitrate Concentration near the Surface of Frozen Aqueous Solutions. Harley A. Marrocco and Rebecca R. H. Michelsen. J. Phys. Chem. B: December 15, 2014